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Abslrael A classificalion scheme, which is able lo relate many crystalline compounds 
lo the decagonal quasi-crystalline phases, is given based on a description of the atomic 
decaralian in terms of a small number of subtiling mils. Th is  scheme is  suitable for 
one-dimensional sequences, two-dimensional tilings and threedimensional networks. The 
relative numben of each type of tiling unit in the Penmse pattern are calculated. The 
paper first focuses on the two-dimensional aperiodic plane. In a way reminiscent of 
poiytypism, a dislinction i s  then made according to the way such planes are stacked 
periodically on top of each other, thus giving insight into lhe structure of the known 
decagonal phases. Emphasis is then put on Ihe aperiodic scheme, which may be related to 
non-ideally ordered icosahedral phases. This way of describing the S ~ N C ~ U T ~  allows us to 
constmct atomic models in three dimensions and to calculate accordingly the composition 
of the model ~t ru~ture  staning from a known crystalline phase wilh identical or closely 
related composition. Many appmximant and quasi-crystalline SINuClU~es, not all yet 
observed experimentally, may be soned out. 

1. Introduction 

Quasi-crystalline phases are most often associated with crystalline compounds, either 
because they form simultaneously within the same specimen or because their 
compositions are closely related. Such crystals are usually characterized by large unit 
cells and show in reciprocal space scattering patterns that are reminiscent of those of 
the true quasi-crystals [l]. The structures of these crystalline compounds, the so-called 
approximants, are constructed with subtiling units (for example, tbc convex pentagon) 
identical to those observable by high-resolution electron microscopy (HREM) in 
the quasi-crystalline phases when looked at along a forbidden crystallographic 
axis (Le. fivefold, 10-fold, pseudo-10-fold 12-41, Altogether, the quasi-crystalline 
and approximant phases contribute in a very fascinating way to what is called 
polymorphism. Since there are more and more new approximants discovered in 
quasi-crystal-farming alloys, we propose here (section 2) a classification scheme that 
will enable us to relate many approximant structures to each other as well as to the 
quasi-crystalline phases in a simple way. n o  types of quasi-crystalline phases are 
considered. The decagonal phase [ S ]  on the one hand is a periodic packing along 
a 10-fold axis of aperiodic atomic planes. On the other hand, aperiodic stacking of 
aperiodic planes along a common fivefold axis produces a quasi-periodic network, 
which, despite not exhibiting the perfect m% point group symmetry assigned to the 
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icosahedral phase [6], is worth considering. Although entropy stabilization may play 
a great role, both StrUCtUreS in twodimensional (ZD) real space may be preferably 
represented by a Penrose tiling (PT) [7] pattern when viewed along a forbidden 
crystallographic axis. 

The Structural details of a ZD quasi-crystal were sorted out by Steurer and Kuo 
[SI for the decagonal d-Al-Cu-Co(Si) [9] system. Before this experimental result, 
Kumar et ai [IO] had proposed some candidate decoration models of the decagonal 
phase based on crystalline AI,Mn [ll] and Al,,Fe, [12] structures They proposed to  
rely upon two types of layers for the construction of the decagonal phase. However, 
models in three dimensions incorporating the periodic stacking sequence cannot be 
constructed owing to  the different periodicities found in the crystalline phase (8.1 A 
for Al,,Fe, [12]) on the one hand and the decagonal phase (16.5 8, for AI-Fe (13,141) 
on the other. Thus, no calculation of the composition of the simulated decagonal 
structure can be made. It is the aim of the present paper to propose a method that 
is able to calculate the composition of a highly ordered quasicrystalline phase. At the 
same time, a three-dimensional structure can be specified in detail. 

The ideal icosahedral structure is often attributed to a 3D PT model (IS, 161. It 
is packed by only two tiling units: prolate rhombohedron and oblate rhombohedron. 
It has been used to a large extent, especially for structure simulation and indexation 
problems of icosahedral phases [17-241. Quite generally however, the Penrose 
rhombohedra have different internal atomic configurations [22-291. Different models 
have been proposed to decorate this 3u PT model by placing atoms within the 
rigid geometry [22-251. Guyot and Audier [22] based a model on local atomic 
configurations similar to the crystalline AI-MnSi a-phase [17]. An analysis of the 
a-phase in terms of rhombohedra similar to the tiling units of the 3u PT packing 
was carried out by Henley and Elser [23]. Another structure model has been derived 
by Janot et ai [25] from a 6~ crystallographic analysis of neutron scattering data, 
beyond the determination of partial pair distribution functions [30] in the i-AI-Mn 
icosahedral phase. 

Duneau and Oguey [21] have also proposed a model for the icosahedral i- 
Al-MnSi quasi-crystal built by a cut method. Their model uses the 3D PT as a 
reference frame to lix the atom positions and to describe local patterns as proposed 
i!! [1%,21,27,31,32!. nUn !y.* nf cliicters: dodecahedral and rhombic triacontahedral. 
enter in the construction of polyhedral atomic surfaces. Successive refinements are 
related to replacing a small dodecahedron by a small rhombic triacontahedron and 
further on by a larger dodecahedron and a rhombic triacontahedron. The way 
polyhedra are generated is quite similar to our structure description used here. 
Instead of using the 3~ PT, we ground our model on an algorithm consisting of 
stacking ZD PT networks, which will by the way generate different polyhedra from 
small size to larger size. We will see later that the calculated stoichiometry comes 
very close to the composition estimated experimentally for the icosahedral i-AI-Mn 
phase without silicon. 

This paper consists of two main parts. The first one focuses on the classification 
scheme. This scheme is based, on the one hand, on a small number of tiling units 
that construct the periodic or quasi-periodic planes; and, on the other hand, on the 
stacking sequences of these periodic or quasi-periodic planes along the perpendicular 
direction. It is suitable for one-dimensional (lD), two-dimensional (ZD) and three- 
dimensional ( 3 ~ )  classifications. The ID scheme is characterized by two segments, one 
long (L) and one short (S), and is given basically for the sake of illustration. The ZD 
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scheme is characterized by tiling units such as the convex pentagon, the thin rhombus, 
etc. The 3D scheme works out stacking sequences of the previous 2D tilings (and not 
3D tiling units as is usually considered in the literature). Periodic sequences are 
relevant to the decagonal phase (and relative approximant crystals). Meanwhile, the 
perfect icosahedral phase necessarily requires that the atomic number density varies 
continuously from one plane to the next one and therefore cannot be constructed by 
a finite set of planes or  sheets. If the number of sheets is finite, the resulting network 
may nevertheless be truly aperiodic in 3~ provided both the planes and the stacking 
along the perpendicular direction obey a quasi-periodic construction scheme. This 
specific case will be examined to some extent in the following although the network 
will no longer strictly exhibit the m% point group symmetly. 

The purpose of this part of the paper is to focus attention onto atomic sheets, 
planar as well as corrugated, observable in known approximant phases. Equivalent 
sheen adapted to the quasi-crystalline structures may be deciphered from the previous 
ones by applying suitable symmey  operations. Then, stacking these sheets on top Of 
each other along a fivefold axis produces a 3~ model within the limits of stereological 
constraints that are specified. This way of looking at quasi-crystals and related crystals 
is vely close to the method adopted for polytypes. The main difference with the 
field of polytypes is that, instead of honeycomb or triangular lattice planes, we will 
stack Penrose ZD-lattice planes, either truly aperiodic, suitable for quasi-crystals, or 
approximant, which are needed to build the crystal structures. Penrose lattice planes 
are used herein because they are unequivocally defined, despite the fact that we 
realize that random-tiling planes are presumably better adapted to quasi-crystals; see 
discussion in [33]. These 2D lattice planes or  layers carry the appropriate atomic 
species. This will lead to a satisfactory understanding of the relevant structural 
conditions for a specific quasi-periodic structure to form. 

Elaborating on the previous results, the second main part of the paper is a report 
on evaluating the composition of a decagonal phase in an alloy system knowing an 
approximant structure. We first calculate the relative number of each tiling unit 
constructing the 2D lattice (e.g. the Penrose tiling pattern). The second stage consists 
of decorating 2D units similar to the ones in the crystalline phase. Depending on 
how the 2D lattices are stacked, the composition can then be calculated according 
to the number of 2D lattices building the 3D structure model. ' h o  specific quasi- 
crystalline phases, namely the decagonal d-AI-Mn-(Ni) and the icosahedral i-AI- 
Mn-(Ni) phases, are studied, from the points of view of both model building and 
experimental studies of real samples by diffraction techniques. Thus, the paper 
will provide clues to understanding how structural units, which entail the fivefold 
orientational order, match together to form either the approximant crystals or the 
quasi-crystalline phases. 

2. Classification scheme 

2.1. One-dimensional classification 

The Fibonacci sequence is a quasi-periodic succession of two intervals, one long (L) 
and another short (S), having for instance a length ratio equal to T.  It can be 
generated by an iterative procedure of transformation in either deflation or inflation 
modes. In the r-' deflation construction, one long segment L transforms to the 
sequence L-S- and one short segment S transforms to a long segment L- (and 
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vice versa for a T inflation construction). If the length ratio is taken as L/S = T ,  

then unambiguously, one may identify S = 1, L = T ,  S- = 1/L = T - ~ ,  L- = 1, 
S+ = T ,  L+ = 1 + L = T' in arbitraly length units. This procedure embodies the 
self-similar properties of the structure. Among the methods used to construct the 
self-similar sequences, the strip method is one of the most frequently employed in 
such a description [18,34,35]. A strip cut through a ZD square lattice having irrational 
slope i.e. m = T ,  gives a 1D analogue of the Penrose tiling. Alternatively, a strip 
tilted to have slope m rational gives a periodic tiling. In this periodic tiling, each 
unit cell is constructed by both segmenb L and S. It is actually a fragment of the 
Fibonacci quasi-periodic sequence that contains the origin. It fits better and better 
to the quasi-periodic tiling with increasing length of the unit cell. Since all sequences 
that form according to the value of m, either rational or irrational, contain the two 
units L and S, we may label them according to  the number of units they contain, 
i.e. T* ' I " (N~) ,  where exponent +1 labels an inflation mode, -1 a deflation mode, 0 
the normal sequence and N,(i = L or S )  is the number of segments L and S. The 
length of the ID unit cell repeated periodically along the sequence is given by ?do,  
where II is the order number of the sequence (see table 1) and d ,  is the length of 
the long segment L. n b l e  1 presents a list of tiling notations for a few approximant 
ID sequences. The ratio N L / N s  in the rational sequence corresponds to the slope 
m. In the quasi-crystalline case, this ratio is taken equal to T .  

2.2. Two-dimensional class8cation 
?ivo such ID sequences, oriented along two directions separated by an angle of 27r/10, 
may be used to generate a 2~ tiling. The generation of these 2D packings is equivalent 
to the projection on the 2D plane of a 2D strip lifted in a 4D periodic lattice. ?ivo 
examples of approximant tilings generated by two ID sequences with m, = 3/2 and 
m2 = 5/3 are shown in figure 1. The Bravais lattice of these approximant networks 
is face-centred orthorhombic. In this figure, two sets of possible tiling elements are 
used to tile the lattice. The first set consists of the (fat) f-rhombus and the (thin) 
t-rhombus, while the second set consists of the (convex) v-pentagon, the (concave) 
c-pentagon and the (thin) t-rhombus (figure 2). These two sets of tiling elements 
share common points. For an identical unit length d, of segment L in the ID tiling, 

filled with one c-pentagon and one v-pentagon. Also one v-pentagon can decompose 
into one f-rhombus and one c-pentagon. 

As in the ID classification case, the 2~ scheme of the periodic (approximant) and 
quasi-periodic (Penrose tiling) patterns are classified according to the numbers of 
tiling elements constructing the unit cell. Instead of two segments L and S,  the 2D 
tiling elements are the f, t, v or c units. A notation based on the segments L and 
S of the ml and mz sequences would not define the tiling unequivocally any more, 
whereas the 2D tiling units do. We define a general notation as T " (  N ;  . . .), whire 
Ni is the number of element of type i = f ,  t, v, c and n is the position of the tiling 
in the inflation ( n  has positive sign) or deflation (n has negative sign) sequence. For 
the Penrose pattern, the packing notation is ~ " ( m p , )  or r " (mvmtmc)  depending 
on which set of tiling elements is employed. "ble 2 presents some examples of the 
notation for the planes perpendicular to the fivefold axis or pseudo-fivefold axis in the 
quasi-crystalline cases and the approximant cases, respectively. Indeed, most of the 2D 
patterns of the approximant phases can be referred to a family group. For instance, 
let us consider only the constitutive units of the patterns. Then, the tiling patterns Of 
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Figure 1. Four examples of 2D patlems with Same unil cell illustraling ml = 312 Venus 
m2 = 513 appmximants. A unit ccll (broken lines) together wilh the 1~ corresponding 
sequences are given in each patiem. (a )  (1&6,4,) pattern, ( b )  ~ ~ ( h . 2 , )  paitem, (c) 
(26116,) pattern and ( d )  r(10r6,) patlem. 

Figure 2. lbo sets of possible liling elements: (a) 
fat f-rhombus (72O) and thin I-rhombus ( 3 6 9  (b)  
convex v-pentagon, concave c-pentagon and thin t- 
rhombus. (c) Relarimship between first se1 and 
second set tiling elemenls. 

C\ 

the [OlO] projections of X-AIl3Fe, [12] and dl-AI?,Mn,,Ni, [36] phases are the same, 
four v-pentagons and two t-rhombuses constructlng the structures. The compatible 
patterns, which are T ,  and T~ times larger than the previous one, have been observed 
in the orthorhombic phases 0, and 0; forming the microctystalline states in the 
AI-Cu-Fe-Cr (see figure 3) and AI-Cu-Co alloy systems 141, respectively. Another 
example can be seen in the [00 11 projection of P-AI,Mn (111 (figure 4) and the (01 01 
projection of the 0, phase (orthorhombic structure that coexists with the 0, phase 
forming the microctystalline state in the AI-Cu-Fe-Cr alloys [4]).The pattern of the 
0, phase is times larger in area than the one of P-AI,Mn, two convex pentagons 
and two concave pentagons constructing the structures. 
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Flgum 3. Three aamples of the ( & Z p ) - ~  
approximanlr: ( a )  X-AI1,Fer. ( b )  +l-AlmMnllNir 
and (c) Oz-Al-Cu-Fe4r phase. The nelworks in 
(a) and (b)  are drawn from crystallographic dam 
reported in [12] and [MI, respectively, whereas the 
network in (c) is conjectured from relevant HREM 
images. 

Figure 4. Crystal s 1 ~ c 1 u ~ e s  of orthorhombic P-Ak,Mn phase and orthorhombic +l- 
A1mMnllNi4 phase. The atoms marked with 1 and 2 are Mn and Ni, respectively. Open 
and full circles are Al. 

2.3. Three-dimensional classificalion 

Before attempting a classification in three dimensions, we introduce two examples 
of the approximant crystal structures; the orthorhombic P-AI,Mn [ll] and the 
orthorhombic 41 phase 1361, selected from among the approximant clystalline phases 
reported so far. Along the pseudo-fivefold axis, the structum are constructed by 
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stacking different types of atomic layers, which may be related to either one of 
two main types, A or B (see figure 4). These two types of layers were defined by 
their average sublattice edge length corresponding to d, E 4.55 A and d, E 2.8 
L%, respectively. The P-AI,Mn orthorhombic phase consists of four layers stacked 
according to  the sequence B'BB'B': B and B' have identical atomic content and are 
related by the space group symmetry operations; B' is different and contains only AI 
atoms. Conversely, the orthorhombic 41 phase consists of six layers. Its sequence is 
BABB'A'B'. As above, the A' and B' sheets are variants of the A-type and B-type 
layers, respectively, obtained by applying the space group Bbmm of the 41 phase. 
In A-AI,,Fe,, a similar sequence may be defined, namely AB"A'B". It contains four 
layers, two of the type already introduced above (A, A') and two layers denoted B", 
similar to the layer B in the 4 1  phase but for a rotation of 36O around the 10-fold 
axis. We will see in the following section that this layer B" can only lie next to a 
layer of type A. Both B' and B" layers correspond to B" and B"' layers by space 
group symmetry. Such layers are shown explicitly in table 3 but we shall drop the 
asterisk in the following in order to simplify the notation, the space group shift of 
the B' and B" sheets being obvious from the notation carried by the adjacent A and 
B layers. The position of AI atoms in B-type layers is the same in both X and 41 
phases, except for 36O rotation. 
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Examples 
w - mz 

1/1 - 2/1 b = 7.55 A 211 -> [IW] 

cell parameten corresponding 
axes 

P-AlsMn a = 6.5 A 1/1 -> [ I  101 

c = 8.87 A 

b = 8.08 A 
h-AII,Fed a = 15.49 A 111 -> [WII 

211 -> [IOO) 
= 12.48 A for h-AIr3Fe4 

1/1 - 211 = 107'43' 
Ol-AlnoMnlaNi4 

a=23.84 111 ->[IO1 
b =  i i . 5 H  L/I .> l i u i l  
c = 7 S A  for@l phase 

01 a=23.66A 3/2-> [ 1 1 0 1  
b = 12.27 A 513 -> [IO01 
c = 32.52 A 

0 2  a=ZO.IOA 312 -> [ I  101 
30. 513 b =  12.27 A 5/3->I1101 

3R. 5/3 

c = 61.94 A 
I )  AI-Cu-Fe 

icosahedral phase 

2) AI-Cu-Cc 
decagonal phase 

T.T = 6.5 At T -> 2-fold axis 

a) = 3.31 At 

Packing notations 1 Alo (or pseudoAt0) 

rar-rand bin-r rhombuses E O ~ Y ~ X - Y  pentagon, bin-1 
rhombus md COIICPY~-E penwgon 

(2f) +(2"2J 

(W,) or Wr2,) ( 4 A )  or .r( I, I , Ic)  

(26r16,) or~(I0,6,) (16,6,4,) or~(6,2,2,) or 
or .r2(4,2,) or ~'(21) T2(2,2,) 

(36r20,)or.r2(6r2,) (26,10,6,)or.r2(4,10,) 

.r*n(mpl,) TT="m,-%s,) 

I c5=4.15 At  I I I 

t paramerer in high dimensional space 
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Examples 

P-AI6Mn 
)r-AII,Fe4 
q 1 - A I 6 ~ M n l l N i ~  
0,-AICuFeCr 

q- AICuFeCr 
d-AL-Mn 
d-AI-Mn-Ni 
d-AI-Cu--CO 
i-AI-Cu-Fe 
Icosahedron 

Dodecahedron 

lcosadodecahedron 

Rhombic 
maconrahedron 

8.87 
8.083 

12.5 
12.27 

12.27 
12.4 

12.5 
4.15 

8.636(E) 
5.342.w 

10.111(=) 
6.259W 

12.49W) 
7.742(d) 

14.887@) 
9.379@) 

:EM microgral 

m 

tacking sequences 

; 'BB'*B* 
,B,,A*B,'L 

.BB*A*B*B 

.BB*A*B*B 

.BB*A*B*B 

.'BB*B'*B*B 

.BB*A*B*B 
:E* 
.periodic sequence 

sec rable 5 

341. b -  notal a - as revealed from 
assumption. 
c - valiies calculated from dA = 4.55 A =edge lengih in layer A. 
d - values calculated from dn = 2.81 A =edge length in layer B, 

lo. of layers I Notation 

see below 

obtained from theoritical 

~. 
e - notations: D =decagonal phase. I = icosahednl phase and II = (m?,",). 

The average distance between two layers in the crystalline phases is about 2 8, 
This value can be related to the periodic translation distance d, in all the decagonal 
phases found so far. For example, the decagonal phases of the AI-Mn, AI-Fe and 
AI-Cu-Co(Si) systems are constructed by a layering system along the 10-fold axis with 
six (d, = 12.4 A), eight (d, = 16.5 A) and two (d, = 4.14 A) layers, respectively. 

Thus, the 2D classification can be extended to  a 3~ scheme with only the addition 
of a third integer, namely the number D, of layers, in the perpendicular sequence 
(parallel to the 10-fold direction), that is D 3 ~ n (  Ni . . .). This notation can he applied 
to all the approximant and quasi-crystalline phases, including the icosahedral phase, 
examined in the present paper as suggested in table 3. For icosahedral quasi-crystals, 
the number D, is infinite. The corresponding notation becomes I ~ " ( c o ~ , )  or 
Irn(covm,~J where I stands for D, = CO. We will see later in section 3.3 that 
various stacking algorithms adapted to the icosahedral phase may he distinguished 
within this scheme. 

This 3D classification points out the distinction between two phases, for instance 
d-AI-Mn versus d-AI-Cu-CO and A-AI,,Fe, versus 41 phase, which eventually could 
not be distinguished according to the 2D scheme. For example, the 2D notation for 
both X-AI,,Fe, and 41 phase is (4,2,). Without considering the detail of the atomic 
decoration, these phases belong to the same class. As a matter of fact, their stacking 
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sequences in the third dimension are quite different The sequence for A-AI,,Fe, is 
AB"A'B" (four layers) whereas it is ABB'A'B'B (six layers) for the 61 phase. 

S-S Kang and J-M Dubois 

3. Periodic versus aperiodic stacking sequences 

Most of the approximant and decagonal structures are constructed by stacking one or 
two types of layers along the pseudo-10 and 10-fold axes, respectively, with periodicity 
corresponding to an even number of layers. Examples are the approximant 41- 
AI,,Mn,,Ni, (six layers), decagonal d-Al-Fe (eight-layers) and d-Al-Cu-Co (two 
layers) phases. Why the decagonal and its approximant phases always consist of 
an even number of layers is not yet clear. Our first intention is to demonstrate that 
this is necessarily the case. The argument will be based on stacking layers of the 
type introduced in the previous section, yet satisfying topological constraints on the 
nature of the layer (A, A', B, B', B") that may follow a sheet of a given type. Such 
constraints simply arise from tendency to close packing of metals and alloys and are 
readily observed in known approximant crystals. 

A second point of interest is to know whether genuinely aperiodic 30 crystals 
may be accounted for as well by an appropriate sequence of atomic sheets. The 
(positive) answer to this question will also be elaborated in this section. As a result, a 
series of clusters with icosahedral point group symmetry (from icosahedron to rhombic 
triacontahedron) will be constructed according to distinct stacking sequences. Thirdly, 
we will shed some light on the difference between decagonal ZD and 3D aperiodic 
structures. 

3.1. Flat and puckered atomic layers with fivefold vmmetry 

We have introduced in section 2.3 that the approximant crystal structures consist of 
atomic layers that may all be referred to two main types denoted A and B, respectively. 
There exist other layers, for instance A' and B', which relate to the previous ones 
through symmetry operations of the space group. Sheets like A and A* (respectively 
B and B') carry naturally the same atomic content. As already mentioned, it may 
be necessary to use other sheets to account appropriately for a given structure. The 
R.AI  mmnnl.nrl rPnllirPr I ~ ~ n  I I ~ . C  B' acri the 41 phase jl complementary layer 
noted B" in the previous section. This way of decomposing the structure into ZD 
elementary bricks has already been performed by several authors, see e.g. 181. 

The atomic decoration characteristic of each approximant phase may be attached 
to the tiling units, for instance the convex pentagon and thin rhombus of the 41 
phase. There may be several possibilities to do so, but when a choice is made, the 
relationship between atomic decoration and tiling pattem is unequivocally defined. 
Yet, using a set of tiling units (i.e. t, v, c or t, f), a pattern with perfect fivefold 
symmetry around the origin may be constructed and furthermore decorated by the 
atoms attached to the units. A detailed example will be examined in section 5 to show 
how to solve the decoration of any unit, including the one which is not present in the 
approximant pattern (e.g. the v unit in the 41 phase). Figure 5 presents the A-type 
and B-type sheets, having fivefold symmetry around an origin, that are produced from 
the corresponding sheets shown in figure 4, which have only broken fivefold symmetry. 
Using the classification scheme developed in section 2.2, it is straightfonuard to see 
that this peculiar choice of perfect fivefold symmetry is not the only possible one. 
Approximant ZD tilings of higher order than the ones illustrated in figure 4 may be 

- -- ."(I..-" --... ._ 

1 
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Figure 5. Examples of simulated aperiodic patterns. with a fivefold centre of symmetry, 
based on +l-AlaMnllNid subtiling elements and their atomic configurations. A and B 
are normal layen and A' and B' are two layen derived rmm the previous ones by 
applying respectively the symmetry operations of the space group. Below B and B' are 
shown two side views carraponding to lhe bands (bmken lines) draw in the layen B 
and B' lo emphasize the cormgation of the layen in the space perpendicular to their 
plane. 

constructed as well. In the following, we will, however, restrict ourselves to stacking 
layers with perfect fivefold symmetry. 

An important point to raise at this stage is that all A-type layers are flat atomic 
planes whereas all B-type layers (B, B', B") are corrugated. They exhibit a thickness t 
from upper to lower atoms that is typically of the order of 1.5 A (see the schematics 
laid out in the bottom part of figure 5, which presents a cut through the area of 
layers B, B' defined by broken lines). The edge length of each type of sheet is 
different, having d, = T d ,  when the fivefold symmetry is perfect. The A-type 
patterns therefore map onto the B-type ones by a first-order inflation. These pvo 
differences, planarity versus corrugation and edge length, will introduce the first- 
neighbour stacking constraints depicted in the following subsection. 

3.2. Stereachemical constraints and stacking aIgorfhmJ 

We shall not assume any knowledge of the detailed atomic potentials that promote 
the formation of a given approximant structure. We just observe how it is constructed, 
its layering system and the constitutive tiling units. Preserving the same units to build 
up a related structure simply means that most of the set of interatomic forces are 
the same except for some flexibility that permits the rearrangement. We shall see 
later in this paper that a rearrangement from an approximant phase to a quasi-crystal 
involves a small nominal composition change. Conversely, we shall assume that an 
appropriate composition shift triggers the relevant rearrangement. 

The most important characteristic, common to all phases of interest to this work, 
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is close packing. Therefore, the only requirement that any kind of arrangement of 
units has to  fulfil is to preserve the compactness typical of any metallic alloy. The 3~ 
networks will obviously obey this rule as long as most of the first neighbour distances 
come close to d,. Therefore, the following hold: 

(i) A structure (approximant or quasi-clystalline) necessarily contains B-type layers 
(and not only A-type sheets). This obvious rule needs no further comment 

(ii) The succession of A- and B-type layers cannot be random, which imposes 
constraints on the possible choices of adjacent layers. These first-neighbour 
constraints are made explicit below. 

(iii) The angular shift between successive layers must be specified. Second- 
neighbour constraints follow, which are given below as well. 

The first-neighbour layers that may be associated are listed in table 4. For instance, 
an A-type layer can only be followed by a B-type layer. Conversely, there is a choice 
between B' and A sheets for stacking on top of a B layer, etc. When looking at all 
the possibilities, one may define all the possible starting sequences that contain three 
layers, the initial one being either of type A or B and the two adjacent ones, i.e. the 
one below and the one above (third column of table 4). 

Second-neighbour constraints arise from (iii) above when a new layer is added 
to the previous starting sequence. Again, as an example, a layer of type A (or A*) 

S-S Kang and .I44 Duboir 

Layer 

A 

A* 

B 

B* 

B" 

Possible neighbouring First neighbour Second neighbour 
Inyers sequence sequence 
B o r  B" BAU B*IBABIB* ( I )  

B"AB ( 2 )  A*IB"ABIB* 
B"AB" A*IB"AB"IA* 

B* or B" B*A*B* BIB*A*B*IB 
B:kA*B" BIB*A*B"IA 
B"A*B" AIB"A*B"IA 

B* or A B*BB*; BIB*BB*IB 
A*IB*BB*IB 

B"BA A*IB*BAIB 
A*IB*BAIB" 
BIB*BAIB" 
BIB*BAIB 

B*IBB*BIA 
A:%[B*B B*IA*B*BIB* 

B*IA*B*BIA 
B"IA*B*BIB* 
B"IA*B*BIA 

.B"IA*B"AIB 
B*IA*B"AIB" 
B*IA*B"AIB 

B or A* B P l 3  B*IBB*BIB* 

A o r A *  A*W,* B"IA"B"AIB" 
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cannot join a layer B if a layer A already sits on the opposite side simply because the 
distance between some A-type layer vertices would be too short In table 4, we have 
considered also the B" layer typical of the X-AII,Fe, compound because this specific 
layer releases this constraint (whereas B' does not). This layer will play an important 
role in the followhg. The 22 possibilities of stacking slabs that take into account the 
first-neighbour constraints as well as second-neighbour constraints are listed in the 
fourth column of table 4. 

Thus, we have defined a set of rules that govern the stacking of layers to infinity 
like a cellular automaton. Naturally, diverse structure will build up, depending on 
whether the ZD sheets are periodic or not on the one hand and the stacking sequence 
is periodic or not on the other: approximant 3D crystals, ID aperiodic crystals, 2D 
aperiodic (decagonal) crystals and 3D aperiodic crystals. In the following, we shall 
no longer consider the approximant case nor the 1~ aperiodic structure produced by 
stacking ZD periodic networks according to an aperiodic sequence. 

Let us thus concentrate first on the decagonal models that may be generated by a 
periodic stacking of ZD PT. There are basically two ways of doing so, one by stacking 
A and B planes and the other by introducing as well B" planes. Considering the first 
situation, the algorithm may be referred to either an A or a B plane taken as origin. 
Both cases are considered in table 5(a),  which presents the various sequences that 
may be built up to I O  layers with type A and B planes (if AI-Mn alloys are to be 
accounted for, B' sheets will substitute for A-type ones; see figure 4). This algorithm 
satisfies the first- and second-neighbour stacking conditions developed in table 4 and 
therefore the nature of the layer that may be stacked at a position m above the origin 
layer is restricted to a limited choice as indicated in table 5(a). 

We define a coefficient uA,,, as the number of distinct possibilities to occupy 
the layer m when the origin layer is occupied by a sheet of type A. Similarly, the 
coefficient uB,, will represent the number of possibilities to stack a sheet at position 
m when the origin layer is a B-type layer. Notice that because an A-type layer is 
necessarily followed by a B-type layer, the coefficients up," and uBg are shifted by 
one layer (table 5(a)). Now, it is easy to verify that, owing to the constraints given 
in table 4, these coefficients satisfy the following 'iteration' rules where the iteration 
runs through successive layers: 

uA,m = uA,m-2 + "A.97-3 (3.1) 

with uA," = 1, uA,, = 1, uA,z  = 1, uA,3 = 2 the initial coefficients, from which t h e  
sequence follows. The sequence also runs such that: 

"A,m - " A , m - l  = uA,m-2 - 'ILA,m-3' 

Also, the 'B' coefficients obey the same rule 

but with initial values uB," = 1, uB,l = 1, uB,z = 2, uB,3 = 2. Among all possibilities 
the number of A or A' layers that may lie on layer m is 

(3.3) uA/A* - - 
A,m - uAsm-Z + UA,m--4 - UA,m - uA,m--l 

while for B and B' layers one has 
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Table 5. (a )  Slacking algorithms for layers A, A'. B and B'. (b) Slacking algorithms 
for layen A, A'. B, B' and B". 

un u i  u2 
(referred I I I 

stacking 
algorithm 

A - B  - E *  

W I  LI I 
(referred 

" 
eferred 
A) 

( b )  

ackiing 
'garithm 

- 
12 

. B' 
- B* 

A 

- 

18' 

1 B' 
- B* 

A 

- B' 
- B* 

- B' 
A 

l B *  - 
ug 
12 
- 

The periodicity of the layering system implies that an A' layer will appear 
necessarily between two successive A-type layers (B" between B' layers in AI-Mn 
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alloys) in order to cancel the angular shift between layers over the period. An 
example of such a periodic stacking is ABB'A'B'BA (see table 5(a)). Accordingly, 
the number of layers in a periodic sequence in table 5(a) starting on an A layer is 
necessarily even. Furthermore, the number of independent sequences that may be 
formed with m layers (m < 10) is readily evaluated from the table 5(a). 

If one starts from a B-type layer (table S(a)), one has 

(3.5) uB/B' = 
B,m uB,m-2 + uB.m-4 = uB,m - %,m-l.  

For the same reason as above, sequences based on B-type layers will also comprise 
only an even number of layers. As a matter of fact, there is a single possibility to  
do  so, namely the BB'BB' . . . D2 sequence, which contains two layers (table 6). A 
sequence with two layers such as ABAB is ruled out because of second-neighbour 
layer exclusion (table 4) as well as a sequence with four layers. Such a sequence will 
appear, however, after introducing B" sheets below. Sequences with more layers are 
possible (table 6), such as the D6 one with six layers and the D8 with eight layers. 
All D2, D6 and D8 sequences are unique and were already observed experimentally. 
Conversely, the periodic stacking of 10 layers offels two distinct sequences as table 
6 reports but which have not yet been found. Notice that some sequences present 
mirror planes perpendicular to the stacking direction (space group PIOs/mmm) 
whereas the othels do not (PIOSmc). 

D 6  
(e.g. d-AI-Ni-Mn) 

D 8  
(e.g. d-AI-Fe, d-AI-Cu-CO) 
Dlo, 

Dlh 

Table 6. Slacking sequencs for decagonal phases 

. .  

6 ..BABB*A*B*.. (..LL..) 

8 ..B*BABB*A*B*B.. 
T T  

no mirror 
..B*A*B*BB*BB*BAB.. 

no mirror 
I O  . ..BB*A*B*BB?BABB*.. 

, 

T T 

Type of decagonal phase number of layers stacking sequence 
D 2  2 ..BB*.. 
(e.g. d- AI-Cu-Co) no mirror 
D 4  4 ..AB"A*B".. (..SS..) 
(e.g. d-AI-Cu-Co) T T  

T mirror position 

Introducing a B" layer as a possible occupant of layer m changes dramatically the 
type of Structures that may form (table 5(b)). The iterative algorithm is now ruled by 
the relation 
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with the first three terms being 1, 2 and 2. In this formula, the subscript A was 
dropped because a type A plane is necessarily included in the sequence if a B" sheet 
is also present. Thus, this A plane may always be taken as origin. 

Again, periodic sequences will all be composed of an even number of layers. An 
example of such sequences that was not already pointed out in table 5(a) is the D4 
sequence with four layers AB'" B" (table 6). 

Except for the two possible DlOa and DlOb sequences, which have not yet been 
observed in real materials, all other stackings fit the experimental data available today. 

An important new fact due to the introduction of layer B" is the existence of 
long and short segments in the sequences of table 5(b) ,  i.e. L = ABB'A' and S = 
AB"A'. Because A-type sheets are actually planar, the length of these segments is 
well defined. We will demonstrate in the next subsection that these lengths are in the 
ratio L I S  = T in aperiodic stackings. The point to mention here is that from table 
5(b) one may have basically three distinct configurations (i) sequences of short slabs, 
SSSS . . ., and (ii) sequences of long slabs, LLCL .. ., both as indicated in table 6, 
and (iii) interlaced sequences constructed by using both L and S slabs. 

An example is the D8 sequence presented in table 6. A probably more attractive 
case is the one that may be built by stacking the two slabs L and S according to 
a Fibonacci scheme. We demonstrate below that this construction is feasible and 
leads to a calculated composition in agreement with experimental determinations of 
the composition of the icosahedral phase. We insist again on the point that such 
a model cannot correspond to an ideal icosahedral phase, which shows the atom 
number density varying continuously within a certain range when going from one 
plane to another. Departure from ideal icosahedral point group symmetry is well 
known, however, in many icosahedral phases, including the thermodynamically stable 
ones and may therefore be accounted for by our model. 

This important specific case is the one that starts with two adjacent slabs L and 
S and therefore is composed of an odd number of five layers. Another sequence 
SL, enanthiomorphous to the previous one, may possibly be stacked on top of 
it, thus leading to a hypothetical D10 decagonal structure, which however has not 
been observed till now. Looking at table 5(b) proves that such a configuration has 
little probability of occurring as the nominal composition of the structure does not 
cn!!~snnnrl r---- !hp spprnprlsrc pmpnr!inn nf R" layers. 1nrlep.d: the prnhahility nf 
putting a layer B" at the sixth position is given by 
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(3.7) B" - (uA/A. P' - 5 

where the coefficients ukIA* have the same meaning as above. From table 5(b), one 
obtains p$ = (3/8) x (6/17) = 0.132. Consider now the six equivalent directions of 
fivefold symmetry along which the stacking must be performed, say on the upper side 
of an icosahedral cluster. The layers deposited along these directions will interact on 
edges and vertices of the cluster. This tells us that the probability to lay down B" 
layers is vanishingly small ( ( P ? ' ' ) ~  = 5.4 x lo-')). 

As a result, the probability to have two successive S slabs along each of the 12 
equivalent fivefold directions of the complete icosahedral cluster is virtually zero and 
an aperiodic stacking may form with much higher probability than a decagonal phase 
(with the proviso again that the composition is sharply the right one). There are 
two interesting conclusions to draw from this point. The first is that the sequence 
of lengths of the L and S slabs naturally follows the Fibonacci series. The length 
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Of the individual segments in icosahedral clusters is examined in figure 6 of the next 
subsection. But meanwhile the number of individual layers is ruled by the second 
Lucas series based on (f = 3 and (i = 4, which also approximates the golden 
mean. The second conclusion is that, opposite to the growth of decagonal crystals 

the periodic direction, which in the present model entails no difficulty, the growth 
of an aperiodic stacking necessarily requires removal of many defected layers, which 
may grow along separate fivefold directions. This may explain why the growth of 
icosahedral phases is a very slow process [37], for many defects have to be eliminated 
to achieve icosahedral order. 

I B *  

CI 13 

dl I4  

91 17 

Figure 6. Side views of t h e w  cluster models of the icasahedral point group: (a) BB'A'- 
type icosahedral cluster; (b) BABBVype dodecahedral cluster; (c) ABB*A*(B")-type 
icasadodecahedral cluster (with broken lines: icosahedral kernel); (d) (B)ABB'A*B"- 
type icosahedral cluster (thick lines) including an ABB*A'(B") icosadodecahedral 
cluster (thin lines) and a BB*A' icosahedral kernel; (c) the A*B'BABA'-rype 
dodecahedral cluster (thick lines) including a B'BAB" dodecahedral cluster (thin lines) 
and a (B*)BA(B") icosahedral cluster kernel (broken lines); (f) BABB'A'B"A-type 
icosadodecahedral cluster (thick lines) including a (B)ABB'A*B" icosahedral cluster 
(thin line) and an ABB'A*(B") icosadadecahedral cluster (broken lines); and (g) 
(B")A*B'BAB"A*(B')-type rhombic triacontahedral cluster (thick lines) including an 
A*B*BAB"A' dodecahedral cluster (broken lines) and a (B')BA(B") icosahedral cluster 
(thin lines). 

The change from a periodic to a quasi-periodic stacking of atomic slabs is basically 
related to a composition change. Indeed, an odd number of layers requires a change 
in the number of A-type layers (B' in AI-Mn alloys) relative to that of B and B' ones. 
The introduction of a B"-type layer is specifically able to achieve such a variation. 
More precisely, a Fibonacci stacking will be characterized by a relative abundance 
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( r / 3  + 1 / 2 ) / r 2  0.39 of A layers (or B'), which falls between the values of 1/2 
appropriate t o  the D4 stacking and 1/3 for the D6 sequence. If the model is designed 
for AI-Mn alloys by comparing to  the P-AI,Mn compound, the aperiodic stacking 
will contain fewer Mn atoms than the decagonal one because the number of B' 
layers, which carries only AI atoms, will increase. Opposite to this, for the A-Mn-Ni 
alloys, the aperiodic model will require a higher proportion of A-type layers than the 
decagonal case and therefore will contain more Ni atoms. Section 5 will argue in 
more detail on this point. 

3.3. Consfnrcrion of clusfers wifh the icosahedral point group Symmetty 

According to the previous section, models constructed by stacking atomic sheen of A, 
B and B" type may be able to  account for either decagonal ordering or for defected 
icosahedral order. In the present section, we construct the first four clusters of the 
icosahedral point group and show that they correspond indeed to  the icosahedral 
monograins known so far. We focus on fragments of layers of the types already 
introduced and restrict ourselves to those atoms which occupy the vertices of the 
relevant cluster centred at the origin of the lattice. The very same clusters form 
around all fivefold coordinated nodes of the initial A-type layer of the sequence. 
Layers of infinite extension will propagate the same order along all 12 equivalent 
directions of fivefold symmetry. We shall not, however, assume that this model is 
directly related to the actual growth mechanism of quasi-crystals despite the fact 
that the outermost shells actually fit the real crystal growth morphologies of stable 
icosahedral phases. 

Figure 6 presents the series of clusters with the constitutive layers shown. The 
stacking direction is vertical in this figure. Refer to table 7 for the labelling of 
stacking sequences. The smallest cluster that can be obtained (figure 6(a))  is the 
icosahedron I1 (I because the central polyhedron belongs to the icosahedral cluster 
group, 1 because it is the first one in the hierarchy of figure 6). It is formed by an 
atom at the centre surrounded by 12 other atoms. This kind of icosahedral cluster 
has been observed in many crystalline compounds, for instance, in AI-Mn [31] and 
in AI-MO [38] alloy systems. The I1 cluster has eight variants (namely, i, . . . is) with 
different generating sequences as given in table 7. 

can be constructed in two ways, by using either a B'BAB stacking or a B'BAB" 
stacking (table 7). Then the smallest icosadodecahedral cluster (figure 6(c)) can only 
be constructed in one way, with stacking sequence ABB'A'B" (table 7). Up to 
this stage, thcse clusters are not specific and may he found in both icosahedral and 
decagonal phases since they all contain a fragment of the .C segment, i.e. the slab 
BB' . 

= r d ,  will form at the next step of 
the construction, although it is important to insist again that this view is artificial 
and is elaborated only to simplify the presentation: A-type layers already constituting 
the previous clusters have the same edge length as the new ones and the vertices 
of the layers shared by successive shells already exist. For clarity, they are just not 
drawn. The icosahedral I4 cluster has six variants (table 7). These variants can he 
distinguished into two groups, one originating from the i, cluster (the 'kernel') and 
the other from the i, cluster (table 7). One of its models with stacking sequence 
(B)ABB'A'B' is given in figure 6 ( d )  (hereafter, the notation (0) indicates that 
only a part of the corrugated layer in terms of thickness t (see figure 5) belongs 
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Clusters with edge length d, = 4.55 
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Table 7. (a) Stacking sequences for four types of cluster models. -->, sequences 
which will lead lo a perfect stacking (Fibonacci stacking sequence). B, B. and B" are 
cormgated layem and therefore some of the atoms that are in the upper and lower layers 
do not belong to the cluster under consideration. When such a layer is introduced. it is 
referred to by brackets 0. 

cluster model 
1 1  
(r114II-icosahedron) 

I 2  
(7-'ISII-dodecahedron) 
1 3  

stacking sequence 
il - BB*A* 
i3 - (B*)BA(B) 
i s  - A*B"A(B) 
i7 - B*B(B*) 
1 )  121-type -B*BAB 
2) 122-type - B*BAB" 

ABB*A*(B") 

iz - (B*)BA(B") 
L, - A*B"A(B") 
i6 - B"A*B* 
is - BB*(B) 

(z-~I6II-icosadodecahedron) 
~-1I'III-rhombic macontahedron 

I 4  
(I4II-icosahedron) 

-+ @')ABB*A*B* 
--> (B")ABB*A*B" 

2) I b - t w e  --> fB*)BAB"A*B* 

no sequence can be generated in suck 
conditions 
I) I41-type - (B)ABB*A*B* 

--> mB)ABB*A*B" 

(ISH-dodecahedron) 
I 6  
0611-icosadodecahedron) 

I 7  

to the polyhedron). The vertex atoms of this icosahedral shell are located on top 
of the icosadodecahedral I3 pentagon faces and constitute the well known Mackay 
icosahedron [39]. The dodecahedral I5 cluster (figure 6(e))  can only he constructed 
by one sequence A'B'BAB"A', which originates from the same i, variant of the I2 
cluster. In the icosadodecahedral I6 case, the cluster has three variants (table 7). They 
are built on two distinct clusters, i, and i,. These clusters are different from the ones 
in the smallest I3 model (i.e. i, and i3). One I6 cluster with sequence BABB'A'B'IA 
is schematized in figure 6(f) (the central kernel i, is missing and only vertex atoms 
are drawn). This cluster forms around the I4 cluster of figure 6(d)  and represents the 
main cluster pointed out by high-dimensional crystallographic analysis of the AI-Mn 
icosahedral phase [40]. The rhombic triacontahedron, cluster 17, has four variants. 
We show in figure 6(g) one of the four variants, namely (B")A'B'BAB"A'(B'). This 
variant surrounds the dodecahedral I5 cluster schematized in figure 6(e) hut not drawn 
in figure 6(g). This I7 cluster is the triacontahedral cluster of atoms characteristic of 
A-Cu-Li alloys [41] and resembles the cluster used in the model proposed by Duneau 
and Oguey [21]. It was recognized in the structure of the N-Cu-Li icosahedral phase 
obtained by a high-dimensional crystallographic approach [42]. 

To conclude this subsection, it is clear that perfect icosahedral ordering cannot 

1) I61-type --> BABB*A*B"A 
2) 16t-type - BB*A*B"AB"A* 

- AB"A*B"AB"A* 
--> B*A*B*BAB"A*B* 
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he produced by any sequence containing only the C and S segments. Nevertheless, 
a stacking of both slabs that is arranged according to the Fibonacci algorithm closely 
approaches the atomic arrangement observed in icosahedral phases. In the next 
section, we shall refer to this type of network as the pseudo-icosahedral phase. The 
lengths are then naturally in the ratio C/S = T .  The Maekay icosahedron, which 
was often recognized as a basic constitutive block of AI-transition metal (e.g. AI-Mn, 
Al-Cu-Fe) icosahedral phases, is clearly present in the stackings studied here. In the 
AI-Li-Cu icosahedral phase, the equivalent building block is the so-called ‘soccer hall’ 
constructed by an I7 cluster surrounding an 15 dodecahedron, which also arises in 
the appropriate stacking. On the contrary, in the decagonal phase complete clusters 
at the highest hierarchy level, i.e. I4 to 17, cannot form because I: and S segments 
cannot become adjacent to each other. This argument points out the most significant 
difference between the two types of quasi-crystals. 
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4. Relative number of tiling units 

There are two isostructural decorations of the Penrose tiling (PT) that are used to 
describe the quasi-periodic structure of the decagonal and pseudo-icosahedral quasi- 
crystals. One pattern is constructed by f and t tiling units [43] (hereafter, called the 
PT1 pattern) and the other is constructed by v, t and c units [7] (hereafter, the PR 
pattern). We reproduce these. patterns with a fivefold symmetry centre in figures 7(a) 
and 8(a). The atomic decorations of the PT1 and P R  pattems are deduced from the 
p-AI,Mn and 41 structures, respcctively (see section 5 for details). The PTl pattem 
is generated by tiling the plane with f and t units and applying the matching rules 
introduced by de Bruijn [43]. It can be transformed to the pT2 pattern by replacing 
the f and t units (with no atomic decoration) by the v, t and c units according to the 
line decoration schematized in the left side of figure 8(a) (the dots indicate the ‘pole’ 
vertices) [44]. 

We use the inflation rules 1451 to  calculate the relative abundance number F, of 
a tiling unit (i = f, t, v and c) in both PT patterns. Consider first a single tiling unit, 
either the fat rhombus ( f )  of the PTl pattern (unit of order n = 0 in figure 7(b)) 
or the convex pentagon (v) of the PR pattern (unit of order n = 0 in figure S(b)). 
‘me edge iengtn ~ ~ a ,  oi  [ne riiing unir increases jd, is kepi wmiariij wLii i i i i h i h i  
according to the inflation order number n = 0, 1, 2, 3, . . . or n = 0, 2, 4, 6, . . . 
for the PT1 or P R  patterns, respectively. In the PTl pattern, the total number <f, Of 
f units increases with the inflation order number n like the odd-order coefficients of 
the Fibonacci series, i.e. (!, = (,”,-l. For instance, at step number 2 of the inflation, 
there are five f units while there are 13 at the next step (figure 7(b)). The number 
o f t  units increases like the evenarder terms of the Fibonacci series, i.e. = <,F,-,. 
Therefore, the relative number of f units F, = c!,/((h +ti) approximates the inverse 
golden mean 7-l like the Fibonacci ratio (;,,-,/(&-2 + <;,,-,). Accordingly, the 
relative abundance of the thin rhombus (t) is 6 = 1 - Fr = T-’. Meanwhile, in the 
PR pattern, the relative numbers of convex pentagons (v). thin rhombuses (t) and 
concave pentagons (c) are respectively given by F,: &: F, = T - ’ :  T-? T-4. 

-~ 

5. Model quasi-crystal for AI-Mn-(Ni) alloys and experimental tests 

Atomic decoration models were sometimes proposed as an interpretation of 
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.- Z- :::b-A-;;A- 1-unit17-2 
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0 1 2 3 4 5 6  
intlation number n 

Figure 1. (a) Penrose tiling mi constNcted by 
f- and 1-rhombuses. The atomic configuration is 
laid out according to the B layer in P-AI6Mn. (b) 
Relative number Fi of fat f- and thin I-rhombuses 
Venus inflation order number n of the unit edge 
length r"do, with do the inilial edge length of lhe 
sublattice. 

b) 

G '  
E 0.8 
i 
II 0.6 

0.4 
U; 

0.2 

0 

._ - 

0 2 4 6 8 1 0  
inflation number n 

Figure 8. Penmse tiling F'R COnSlNcted by v- 
pentagons. I-rhombuses and c-penlagons. The 
atomic configuration i s  taken from the A layer 
in h-AlmMnltNi+ (b) Relative number F, of 
convex v-penlagons, thin 1-rhombuses and concave 
e-pentagons versus inflation order number n of the 
unit edge length r"do, with do the initial edge 
length of the sublattice. 

experimental results [46,47], but the most advanced designs were built on a 
comparison with crystal references. In order to substantiate the general model 
proposed in the first part of this paper, we shall also build a specific model for 
a quasi-crystalline phase of given composition, starting from atomic position data 
on a related crystal. For illustration, let us first select two parent structures: 61- 
A1,,Mnl,Ni4 and P-AI,Mn. This choice is made for two reasons. First, the AI,Mn 
crystal may be formed by crystallization of its related quasi-crystal [48]; and secondly, 
their lattices (perpendicular to a pseudo-fivefold axis) can be constructed with the 
help of f, t, v and c units (figure 4). In fact, their structure units can be used 
to generate a quasi-periodic PTI pattern or alternatively a PTZ pattem owing to the 
lattice transformation rules introduced by Henley [44] (see units schematized in left 
side of figure 8(a)) .  We will explain this point of view for the AI-Mn alloy with the PTi 
pattern (section 5.1.1) and for an AI-Mn-Ni alloy with the PT2 pattern (section 5.1.2). 
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5.1. Composition of the decagonal phase 

5.1.1. AI-Mn-Ni decagonal phase. Using the atomic decoration of the subtiling 
elements in the 41 phase, an atomic decoration of the PTZ pattern is generated 
(figure 8(a)) .  This 2D PT pattern can be further lifted to a 3D model by assuming 
that the sequence in the third dimension follows the sequence of the $1 phase, 
i.e. d, = 12.5 8, (periodic distance in the decagonal d-AI-Ni-Mn phase 1491) and 
sequence ABB'A'B'B (table 3). This 3D model is in fact packed by five subunit 
polyhedra such as the ones shown in figure 9. The first three units V, v' and P are 
exactly the same as the units constructing the 41 phase. Note that the capital letters 
V, V' etc., label the 3D tiling units with 2D basis tiles denoted v, v., etc., respectively. 
The other two units C and C' come from the space left open between the previous 
ones when constructing the PT. The relevant atomic decoration is obtained on the 
one hand by preserving the fivefold symmetry around the centre marked by a star in 
figure S(a), i.e. applying the 10-fold symmetry operation. On the other hand, the 41 
phase exhibits a mirror perpendicular to the b axis, which we shall preserve in the 
decagonal structure model, thus going to the PIOs/mmm space group symmetry. 
Since this 3D model is based on the low-energy atomic configuration of the stable 
$1 phase, the occupancy factors + for each site are supposed to be identical to the 
ones in the initial structure of the $1 phase. Here +xj = 1 for the occupancy factor 
of element X (X = AI, Mn or Ni) and atomic site number j ( j  = 1, 2, 3, . . .). 
?b calculate the composition of the decagonal phase in the AI-Mn-Ni system, we 
count the number of atoms of each species present in each polyhedral unit V, T or 
C. From section 4, the relative abundance of units v, t and c in the PT pattern is 
F,: F,: F, = 7- ' :  T - ~ :  T - ~ ,  which is also the one for the units in 3D. The general 
formula that gives this composition can be written as: 

F; = Qx; FJ; 
i=v,v*. ... 

= +Xj[F"/2(XV + Xv.)+ 6% + F c / 2 ( X ,  + &.)I ( 5 4  

where F; is the number of atoms X present in the model decagonal structure and 
Xi is the number of atoms X counted in each polyhedral unit of type i ( i  = V, v', T, 
b a,," b ,. 11, LllW Laac., U,., LalS,YI'l.LGU C"",y""'L1"., I". Y p..-.A., "."I._ --..6"..". 

phase is Al,8,s8Mn,6,soNi4,y2 (at.%). This composition is close to the composition 
of the 41 phase (A17y,,~Mn,~,~8Nis.,3), which is characterized by F,: Fl = 4 2 .  
Assuming that the pattern presented in figure I(a) is suitable for the isostructural 
0, phase with F,: Fl: F, = 166:4 ,  the composition would be AI,,,s2Mnl,~s,Ni,,,,. In 
comparison, the experimental composition of the 0, phase determined by optimizing 
alloy compositions (see next subsection) is around A17y,8Mnl,,8Ni:,4. It is remarkable 
that a change in the relative number of tiling units, which entails a minute change 
of composition (table S), triggers the structure construction into the true decagonal 
phase instead of the approximant structure, $1 phase. The calculated compositions of 
the decagonal and 0, phase are almost the same within 0.1%. The reversible phase 
transitions that are often observed between quasi-crystals and their approximants 
[1,3,50] may accordingly be related to the temperature dependence of the solubility 
of chemical species in the high-temperature quasi-crystal. 

5.1.2. AI-Mn decagonal phase. The structure of P-AI,Mn consists of four layers, 
namely B'BB'B' as already mentioned. This scheme cannot be directly applied to 

fi _-a -.\ 1- .L:- -_ - ^  A L P  --,-..,".-A ^^I^^ ":.:-.. *--" ^^-C..^.h. ,.*,4"--,4 Iln^nn,...nl 
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Figure 9. Se1 of 3D tiling unils suitable for the decagonal phase of the AI-Mn-Ni system 
with d,  = 12.5 k The aloms marked 1 and 2 are Mn and Ni mpectivcly, and full 
circles are AI aloms. m e  V' and C* uniu have lhe same atomic conlent as the V and 
C unils, mpeclively. 

Table 8. Experimenlal and calculated compitions for quasi-crystalline and cryslalline 
phases in AI-Mn-Ni and AI-Mn alloy systems. 

the AI-Mn decagonal hase because the repetition distance along the 10-fold axis 

sequence BBB'B'B'B, which shows mirror planes on B' sheem in accordance with 
some electron diffraction results [SI. Applying the atomic decoration of each tiling 
element in the @-AI,Mn (figure 10) structure to a PTI pattern will give for example 
the configuration given in figure 7(a). To estimate the composition of this decagonal 
phase, we calculate the proportion of each layer (B' or B and B') present in the 
sequence B'BB'B'B'B and we count the number of atoms X occupying each layer. 
With F,: F, = T-': T-* (from section 3), the proportion of layer 1 ( 1  = B or  B') in 
the sequence BB'B'B'BB', FB: 7; = 2/3: 1/3 and the number of atoms X in layer 
I, N z :  N& = T: 1 and NS: N& = 3.6180, the general formula becomes 

is too long, i.e. 12.4 8: , suggesting that six layers are needed. We thus select a 

where F,d is the relative abundance of atomic species X in the AI-Mn decagonal 
phase. 
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Flgure 10. (a) lbodimensional subtiling elements 
consponding to  Ihe layen B, 8' and B* of p- 
AI,Mn with 1 indicating Mn atoms (see also Bgure 
4). 

The composition that can be deduced from this formula is A177.4Mn22,6. This 
composition is very close to the experimental one AI,,Mn, as reported by Daulton 
et a1 1511. 

5.2. Composition of the pseudo-icosahedral phase 

In this section, we use the 2D Penrose tilings PTl, F,: c = T - I :  T-' (figure 9). and 
PTL, F,: F,: F, = T- ' :  Y3: T - ~  (figure 8), and the perfect Fibonacci stacking sequence 
(N,/N, = T )  to calculate the composition of the pseudo-icosahedral model in order 
to make comparisons with data available on the icosahedral phases existing in the 
AI-Mn and AI-Mn-Ni alloy systems. The example below is given for the case of 
AI-Mn-Ni alloys. 

First, we calculate the number of atoms in each layer 1 ( 1  = A or B), ( N i ) .  The 
number of atoms X = AI, Mn or Ni in layer A are: 

N i =  ~ ( 2 . 5 + 3 . 5 ) F , + 1 F , + ~ ( 1 . 5 + 1 . 5 ) F , = 2 . 3 0 9  
N,, A - 1  - z ( ~ ) ~ v  + IF, + ; ( 2 ) ~ ,  = 0.691 

Nki = i (2)FV = 0.618 

whereas in layer B. 

NZ = i(5.5 + 5.5)Fv + lF, t lFc = 3.781 

N&= f ( 0 . 5 + 0 . 5 ) ~ , + 1 ~ , + 1 ~ , = 0 . 6 9 1  

iv;i = OF,  = 0. 

Secondly, we calculate the relative number F,"' of layers 1 stacked in a segment 
w of the sequence of tiles w = L or S (L = AEWA' and S = AB'A'). We obtain 
the ratio FL: F; = 1/3:2/3 and FA: F[ = f: $. Thirdly, we calculate the relative 
abundance F,' of segments zu in the perfect Fibonacci (F) stacking, yielding the 
ratio FZ: F z  = 7-': T-', Then, the general formula can be rewritten as 

F i  = ~ F ~ ~ F , " N ~  = FZ(N;FL + NzF;)+ F E ( N i F 2  t N f g )  (5.3) 

where F& is the relative abundance of element X in the pseudo-icosahedral phase. 
The calculated compositions are i-AI,,,34Mn,,,,,NiS,,, (at.%) and i-Al,Y,4Mn20.6 (at.%) 
(table 8). The composition calculated for the AI-Mn-Ni icosahedral phase is slightly 
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different from the composition A18,,,sMn13~7sNis,s measured in this work (see next 
subsection) and A18uMn,3Ni7 as reported in [52]. Note that these experimental 
determination were performed on specimens consisting of a mixture of crystalline, 
decagonal and icosahedral phases. Although close to it, they do not represent the 
true composition of the icosahedral phase. 

In contrast with the decagonal phase, which grows in the same alloy system 
Al-Mn-Ni, the icosahedral phase needs more Ni atoms than the decagonal phase. 
The Fibonacci sequence increases the number of layers A by a factor r4 /3  with 
respect to the periodic sequence ABB'AWB. Since Ni atoms are found only in 
layer A, their presence thus favours the formation of the icosahedral phase. For 
the Al-Mn case, the calculated composition A17,~,Mn2,,, is almost exactly the same 
as the composition (Al/Si)7y,lMn,u,y calculated by Duneau and Oguey 121) or the 
experimental composition A17y,5Mn2u,s as reported for AI-Mn icosahedral phases 
that contain no silicon [22,53]. 

5.3. Erperimental data on the AI-Mn-Ni decagonal phase 

The validity of our approach may be tested experimentally by scanning the structures 
that form in these alloy systems, for instance in the Al-Mn-Ni alloy, as functions of 
composition. Note that the real compositions of the decagonal phase [49] as well as 
of the icosahedral phase 152) have not yet been determined. 'lb this end, let us first 
consider three ratios of polyhedral tiling units Fv: F,: Fc as follows: 

(A) 0.5:0.3:0.2 

(B) 0.651:0.218:0.131 

( C )  0.81: 0.11:0.08 

corresponding to a composition A17s,oMn,u,,Ni4,y 

corresponding to a composition Al,9.82Mn14.83Nis.35 

corresponding to a composition A18u,7sMn,3.7sNis,5 

These ratios span an overestimated range with respect to the relative number of 
units in the PTZ pattem, so that the results will be more noteworthy for structure 
analysis. 

Alloys of nominal composition as indicated above were prepared in an induction 
melting furnace under inert helium atmosphere. In order to study the phase stability 
versus the cooling rate, ribbon samples were prepared by the melt spinning technique 
on a rotating copper wheel at two quenching rates produced either by a low quenching 
wheel speed of 12 m s-l for the samples denoted M, or by a high quenching wheel 
speed of 40 m s-l for the samples denoted M, (M = A, B or C as defined above). 
Their stabilities have also been studied by differential scanning calorimetry (DSC) with 
controlled heating and cooling rates (5OC min-I). Figures 11 and 12 present the x-ray 
diffraction patterns of all quenched samples. Only the alloy B, which corresponds to 
the exact calculated nominal composition of the d phase, shows a pure decagonal-like 
diffraction pattern (figure 11). The formation of this d phase is almost independent 
of the quenching rate. As indexed in the diffractogram (figure 12), Only a small 
amount of primitive hexagonal 6 phase (a = 17.8 A and c = 12.5 A) is observed 
in the sample prepared at the highest quenching rate. In fact, the d phase is not 
stable. A transformation peak begins to appear at about 650T on the DSC curve 
(figure 13). After annealing for 3 h at 8 2 5 V  and slow cooling to room temperature, 
the sample gives a diffraction pattern characteristic of a few crystalline phases (not 
shown here). From (491 the transmission electron microscopy results obtained on an 
alloy of composition identical to that of the 41 phase show that a decagonal phase 
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20 40 60 io Ilx, I20 
20 

Figure 11. X-ray diffraction pallems of melt-spun MmQla  quenched at 12 m s-l: 

h m p l e  BI; and (c) Alg0.71Mn13.7~Ni~.I (at.%), alloy C-sample CI. See [Sh] for 
decagonal indexing. 

;=; A:jj.j:.kE. ,L'ii.Y ::!.%;, :!!y .4-?2?!:!- !.:; <h> 4!1....M1::...N/:,:: (>l~%),  1""y 

is produced in the quenched samples but, after the authors, this phase transforms to 
a mixture of several approximant phases when a long-term annealing is performed. 
In our annealed sample, more than one crystalline phase is contained, but with 
the ~$1 phase as the major constituent. One of the other crystalline phases is an 
orthorhombic phase isotypic to the 0, phase [54] (see figure l l (a ) ) ,  space group 
Bbm2,,  cell parameters a = 22.5 

When reducing the fv ratio (alloy A), the d phase can he formed only at a high 
quenching rate (figure 12(u)). It is transformed to a crystalline phase C$ with cell 
parameters Q = 7.59 A and c = 7.83 .&, space group P63/mmc isotypic with the 
q5-Al,oMn, hexagonal phase [55] upon heating up  to 590T (figure 13(u)). At low 
quenching rate, the amount of the d phase is negligible (figure I@)). When increasing 
the fv ratio (alloy C), the d phase seems to be more stable at room temperature. 

b = 12.5 A and c = 30.44 %, 
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Figure 12. Same as figure 11 but for melt-spun samples quenched a1 40 m 8-l .  See (571 
for icosahedral indexing. 

Although it coexists with the E phase (figures ll(c) and 12(c)), no transformation 
peak can be observed in the DSC curve (figure 13(c)). The diffractogram of this d 
phase can be relevant either to a microcrystalline state or to a stable decagonal phase, 
but referring to its irregularly shaped and quite broadened peaks, it most probably 
refers to a microcrystalline rather than quasi-crystalline state. If the transformation 
exists, it may be very sluggish so that the variation of enthalpy A H  becomes too small 
to be detected. This explains why the endothermic signal of the alloy B (figure 13(b)) 
is in fact detected at crystal-crystal phase transitions. The decagonal i approximant 
transition may take place before this endothermic peak. In addition, a metastable 
icosahedral phase [52] has been found in the higher quenching rate sample of the 
same alloy (figure 12(c)). 

6. Conclusions 

A detailed classification scheme in lD, 2D and 3D real space is proposed for the 
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~I I Heal flaw (AH1 

Sample CI 
Figmm 13. Differential scanning 
calorimetry (DE) C U N ~ S  (heating rate 
S T min-') for melt-spun samples: (a) 
alloy A-mmple  AZ. 40 m s-I; ( b )  al- 
loy B-sample Bj. 12 m s-l; (c) alloy 
C-mple C,, 12 m .-I; and (d)  alloy 

Salnple c* 

recmpcmlure rc )  C--sample c2.40 m c1. 

approximant phases, fivefold symmetly and 10-fold symmetry quasi-crystals. This 
scheme is based on the close relationship between the structure of the approximant 
and the quasi-crystalline phases. It may also be applicable to other crystalline phases 
and quasi-crystalline phases by packing other subtiling units. 

Referring to the construction of 3D cluster models of the icosahedral group in 
simulated layering systems, we conclude that pseudeicosahedral quasi-crystals may 
be built with two layers (or more) stacked along a fivefold axis as the decagonal 
quasi-crystals do. However, this time the stacking sequence is generated with the 
atomic layers grouped in short and long segments reproduced aperiodically. This 
relates the pseudo-icosahedral phase and the decagonal phase to a unique stacking 
scheme of atomic layers: variants depend on the details incorporated in the layering 
system and basically on the nominal composition. We suggest that the decagonal or 
approximant structures will form when a centrosymmetric position is present in the 
stacking whereas the icosahedral structure will form if the stacking sequence contains 
a non-centrosymmetric origin. 
m.% way nf dP.sr.r;hing the striIctiire allnws 11s tn infer the structure of any phase 

(approximant as well as decagonal or icosahedral) by construction of 3D model 
structure$ based on a known crystalline phase (if it exists) whose composition is 
nearby. This approach is applied to the AI-Mn-Ni and AI-Mn alloy systems. We 
have shown that the formation of specific quasi-crystalline phases depends mainly 
on the relative proportion of convex pentagons with respect to concave pentagons 
and rhombic tiling elements. hase 
corresponds to that obtained for a perfect Penrose tiling, namely F,: F1 = T -  . T 

and F,: Ft: F, = 7-l: T-? T - ~ .  The calculated compositions are in agreement with 
the experimental results. 

The suitable ratio for the quasi-crystalline p. - 2  
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