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Abstract. A classification scheme, which is able to relate many crystalline compounds
lo the decagonal quasi-crystalline phases, is given based on a description of the atomic
decoration in terms of a small number of subtiling units. This scheme is suitable for
one-dimensional sequences, Iwo-dimensional tilings and three-dimensional networks. The
relative numbers of each type of tiling unit in the Penrose pattern are calculated. The
paper first focuses on the two-dimensional aperiodic plane. In a way reminiscent of
polytypism, a distinction is then made according to the way such planes are stacked
periodically on top of each other, thus giving insight into the structure of the known
decagonal phases. Emphasis is then put on the aperiodic scheme, which may be related to
non-ideally ordered icosahedral phases. This way of describing the structure allows us to
construct atomic models in three dimensions and to calculate accordingly the composition
of the model structure starting from a known crystalline phase with identical or closely
related composition. Many approximant and quasi-crystalline structures, not all yet
observed experimentally, may be sorted out.

1. Introduction

Quasi-crystalline phases are most often associated with crystalline compounds, either
because they form simultaneously within the same specimen or because their
compositions are closely related. Such crystals are usually characterized by large unit
cells and show in reciprocal space scattering patterns that are reminiscent of those of
the true quasi-crystals [1]. The structures of these crystalline compounds, the so-called
approximants, are constructed with subtiling units (for example, the convex pentagon)
identical to those observable by high-resolution electron microscopy (HREM) in
the quasi-crystalline phases when looked at along a forbidden crystallographic
axis (ie. fivefold, 10-fold, pseudo-10-fold [2—4]. Altogether, the quasi-crystalline
and approximant phases contribute in a very fascinating way to what is called
polymorphism. Since there arc more and more new approximants discovered in
quasi-crystal-forming alloys, we propose here (section 2) a classification scheme that
will enable us to relate many approximant structures to each other as well as to the
quasi-crystalline phases in a simple way. Two types of quasi-crystalline phases are
considered. The decagonal phase [S] on the one hand is a periodic packing along
a 10-fold axis of aperiodic atomic planes. On the other hand, aperiodic stacking of
aperiodic planes along a common fivefold axis produces a quasi-periodic network,
which, despite not exhibiting the perfect m35 point group symmetry assigned to the
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icosahedral phase [6], is worth considering, Although entropy stabilization may play
a great role, both structures in two-dimensional (2D) real space may be preferably
represented by a Penrose tiling (PT) [7] pattern when viewed along a forbidden
crystallographic axis.

The structural details of a 2D quasi-crystal were sorted out by Steurer and Kuo
[8] for the decagonal d-Al-Cu-Co(Si) [9] system. Before this experimental result,
Kumar et al [10] had proposed some candidate decoration models of the decagonal
phase based on crystalline Al;Mn [11] and Al;;Fe, [12] structures. They proposed to
rely upon two types of layers for the construction of the decagonal phase. However,
models in three dimensions incorporating the periodic stacking sequence cannot be
constructed owing to the different periodicities found in the crystalline phase (8.1 A
for Al,;Fe, [12]) on the one hand and the decagonal phase (16.5 A for Al-Fe [13,14])
on the other. Thus, no calculation of the composition of the simulated decagonal
structure can be made. It is the aim of the present paper to propose a method that
is able to calculate the composition of a highly ordered quasicrystalline phase. At the
same time, a three-dimensional structure can be specified in detail,

The ideal icosahedral structure is often attributed to a 30 PT model [15,16]. It
is packed by only two tiling units: prolate thombohedron and oblate rhombohedron.
It has been used to a large extent, especially for structure simulation and indexation
problems of icosahedral phases [17-24]. Quite generally however, the Penrose
rhombohedra have different internal atomic configurations {22-29]. Different models
have been proposed to decorate this 3D PT model by placing atoms within the
rigid geometry [22-25]. Guyot and Audier [22] based a model on local atomic
configurations similar to the crystalline Al-Mn-Si a-phase [17]. An analysis of the
a-phase in terms of rhombohedra similar to the tiling units of the 3D PT packing
was carried out by Henley and Elser [23]. Another structure model has been derived
by Janot et al [25] from a 6D crystallographic analysis of neutron scattering data,
beyond the determination of partial pair distribution functions [30] in the i-Al-Mn
icosahedral phase.

Duneau and Oguey [21] have also proposed a model for the icosahedral i-
Al-Mn-Si quasi-crystal built by a cut method. Their model uses the 3D PT as a
reference frame to fix the atom positions and to describe local patterns as proposed
in 118 22 27 21 321 Two types of clusters, dodecahedral and rhombic triacontahedral,
enter in the construction of polyhedral atomic surfaces. Successive refinements are
related to replacing a small dodecahedron by a small rhombic triacontahedron and
further on by a larger dodecahedron and a rhombic triacontahedron. The way
polyhedra are generated is quite similar to our structure description used here.
Instead of using the 3D PT, we ground our model on an algorithm consisting of
stacking 2D PT networks, which will by the way generate different polyhedra from
small size to larger size. We will see later that the calculated stoichiometry comes
very close to the composition estimated experimentally for the icosahedral i-Al-Mn
phase without silicon.

This paper consists of two main parts. The first one focuses on the classification
scheme. This scheme is based, on the one hand, on a small number of tiling units
that construct the periodic or quasi-periodic planes; and, on the other hand, on the
stacking sequences of these periodic or quasi-periodic planes along the perpendicular
direction. It is suitable for one-dimensional (113), two-dimensional (2D) and three-
dimensional (3D) classifications. The 1D scheme is characterized by two segments, one
long (L) and one short (S), and is given basically for the sake of illustration. The 2D



Polytypism in decagonal quasi-crystals 10171

scheme is characterized by tiling units such as the convex pentagon, the thin rhombus,
etc. The 3D scheme works out stacking sequences of the previous 2D tilings (and not
3D tiling units as is usually considered in the literature). Periodic sequences are
relevant to the decagonal phase (and relative approximant crystals). Meanwhile, the
perfect icosahedral phase necessarily requires that the atomic number density varies
continuously from one plane to the next one and therefore cannot be constructed by
a finite set of planes or sheets. If the number of sheets is finite, the resulting network
may nevertheless be truly aperiodic in 3D provided both the planes and the stacking
along the perpendicular direction obey a quasi-periodic construction scheme. This
specific case will be examined to some extent in the following although the network
will no longer strictly exhibit the m35 point group symmetry.

The purpose of this part of the paper is to focus attention onto atomic sheets,
planar as well as corrugated, observable in known approximant phases. Equivalent
sheets adapted to the quasi-crystalline structures may be deciphered from the previous
ones by applying suitable symmetry operations. Then, stacking these sheets on top of
each other along a fivefold axis produces a 3p model within the limits of stereological
constraints that are specified. This way of looking at quasi-crystals and related crystals
is very close to the method adopted for polytypes. The main difference with the
field of polytypes is that, instead of honeycomb or triangular lattice planes, we will
stack Penrose 2D-lattice planes, either truly aperiodic, suitable for quasi-crystals, or
approximant, which are needed to build the crystal structures. Penrose lattice planes
are used herein because they are unequivocally defined, despite the fact that we
realize that random-tiling planes are presumably better adapted to quasi-crystals; see
discussion in [33]. These 2D lattice planes or layers carry the appropriate atomic
species. This will lead to a satisfactory understanding of the relevant structural
conditions for a specific quasi-periodic structure to form.

Elaborating on the previous results, the second main part of the paper is a report
on evaluating the composition of a decagonal phase in an alloy system knowing an
approximant structure. We first calculate the relative number of each tiling unit
constructing the 2D lattice (e.g. the Penrose tiling pattern). The second stage consists
of decorating 2D units similar to the ones in the crystalline phase. Depending on
how the 2D lattices are stacked, the composition can then be calculated according
t0 the number of 2D lattices building the 3D structure model. Two specific quasi-
crystalline phases, namely the decagonal d-Al-Mn-(Ni) and the icosahedral i-Al-
Mn—(Ni} phases, are studied, from the points of view of both model building and
experimental studies of real samples by diftraction techniques. Thus, the paper
will provide clues to understanding how structural units, which entail the fivefold
orientational order, match together to form either the approximant crystals or the
quasi-crystalline phases.

2. Classification scheme

2.1. One-dimensional classification

The Fibonacci sequence is 2 quasi-periodic succession of two intervals, one long (L)
and another short (S), having for instance a length ratio equal to 7. [t can be
generated by an iterative procedure of transformation in either deflation or inflation
modes. In the 7~! deflation construction, one long segment L transforms to the
sequence L=S~ and one short segment S transforms to a long segment L~ (and
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vice versa for a r inflation construction). If the length ratio is taken as L/S =,
then unambiguously, one may identify S =1, L=+,8 =1/L =771, L =1,
§* = r, Lt = 1+ L = r? in arbitrary length units. This procedure el'l'lbOdlCS the
self-similar properties of the structure. Among the methods used to construct the
self-similar sequences, the strip method is one of the most frequently employed in
such a description [18,34,35]. A strip cut through a 2D square lattice having irrational
slope ie. m = r, gives a 1D analogue of the Penrose tiling, Alternatively, a strip
tilted to have slope m rational gives a periodic tiling. In this periodic tiling, each
unit cell is constructed by both segments L and S. It is actually a fragment of the
Fibonacci quasi-periodic sequence that contains the origin. It fits better and better
to the quasi-periodic tiling with increasing length of the unit cell. Since all sequences
that form according to the value of m, either rational or irrational, contain the two
units L and S, we may label them according to the number of units they contain,
ie. rELY( N;), where exponent +1 labels an inflation mode, —1 a deflation mode, 0
the normal sequence and N, (i = L or S) is the number of segments L and S. The
length of the 1D unit cell repeated periodically along the sequence is given by 7™d,,
where n is the order number of the sequence (see table 1) and d;, is the length of
the long segment L. Table 1 presents a list of tiling notations for a few approximant
1D sequences. The ratio N; /Ny in the rational sequence corresponds to the slope
. In the quasi-crystalline case, this ratio is taken equal to 7.

2.2, Two-dimensional classification

Two such 1D sequences, oriented along two directions separated by an angle of 27 /10,
may be used to generate a 2D tiling. The generation of these 2D packings is equivalent
to the projection on the 2D plane of a 2D strip lifted in a 4D periodic lattice. Two
examples of approximant tilings generated by two 1D sequences with m; = 3/2 and
m, = 5/3 are shown in figure 1. The Bravais lattice of these approximant networks
is face-centred orthorhombic. In this figure, two sets of possible tiling elements are
used to tile the lattice. The first set consists of the (fat) f-rhombus and the (thin)
t-rhombus, while the second set consists of the (convex) v-pentagon, the (concave)
c-pentagon and the (thin) t-rhombus (figure 2). These two sets of tiling elements
share common points. For an identical unit length d;, of segment L in the 1D tiling,

i ¢ _vhoeabaen nundA ana £ e frarmm hnvnnnnnl ﬂnll uhich nan hn annalls urp“
oo t-rthombuses and ona frhombus form a HIwE Sy WY riiuas SRRy

filled with one c-pentagon and one v-pentagon. Also one v‘pentagon can decompose
into one f-rhombus and one c-pentagon.

As in the 1D classification case, the 2D scheme of the periodic (approximant) and
quasi-periodic (Penrose tiling) patterns are classified according to the numbers of
tiling elements constructing the unit cell. Instead of two segments L and S, the 2D
tiling elements are the f, t, v or ¢ units. A notation based on the segments L and
S of the m,; and m, sequences would not define the tiling unequivocally any more,
whereas the 2D tiling units do. We define a general notation as 7™(N;...), whére
N, is the number of element of type i = f, t, v, ¢ and n is the position of the tiling
in the inflation (n has positive sign) or deflation (n has negative sign) sequence. For
the Penrose pattern, the packing notation is 7™ (oo;00,) or 7™ {0oy00,00,) depending
on which set of tiling elements is employed. Table 2 presents some examples of the
notation for the planes perpendicular to the fivefold axis or pseudo-fivefold axis in the
quasi-crystalline cases and the approximant cases, respectively. Indeed, most of the 2D
patterns of the approximant phases can be referred to a family group. For instance,
let us consider only the constitutive units of the patterns. Then, the tiling patterns of
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Figure 1. Four examples of 2D patterns with same unit cell illustrating m = 3/2 versus
my = 5/3 approximants. A unit cell (broken lines) together with the 1D corresponding
sequences are given in each pattern. (a) (16v6.4;) pattern, (4) 73{2,2.) pattern, (c)
{26;16) pattern and (d) r(10:6,) pattern.

O b O A

Figure 2. Two sets of possible tiling elements: (a)
fat f-rhombus (72°) and thin t-rhombus (36°), (&)
convex v-pentagon, concave C-pentagon and thin t-
rhombus. (c) Relationship between first set and
second set tiling elements.

.
-

cl =

the [0 10] projections of A-Al,;Fe, [12] and ¢1-Alg,Mn,Ni, [36] phases are the same,
four v-pentagons and two t-rhombuses constructing the structures. The compatible
patterns, which are 72 and 73 times larger than the previous one, have been observed
in the orthorhombic phases O, and O} forming the microcrystalline states in the
Al-Cu-Fe~-Cr (see figure 3) and A-Cu—Co alloy systems [4], respectively. Another
example can be seen in the [00 1] projection of 3-Al,Mn [11] (tigure 4) and the {010]
projection of the O, phase (orthorhombic structure that coexists with the O, phase
forming the microcrystalline state in the Al-Cu-Fe~Cr alloys [4]).The pattern of the
O, phase is r2 times larger in area than the one of 3-Al;Mn, two convex pentagons
and two concave pentagons constructing the structures.
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Figure 3. Three examples of the (2.2p)-type
approximants: (@) A-AljsFey, (8) ¢1-AlggMn,Nig
and (¢) O,-Al-Cu-Fe—Cr phase. The networks in
{a) and (b) are drawn from crystallographic data
repotted in [12] and {36], respectively, whereas the
network in (¢} is conjectured from refevant HREM
images.

Figure 4. Crystal structures of orthorhombic §-AlsMn phase and orthorhombic ¢1-
AlgyMny;Niy phase. The atoms marked with 1 and 2 are Mn and Ni, respectively. Open
and full circles are Al

2.3. Three-dimensional classification

Before attempting a classification in three dimensions, we introduce two examples
of the approximant crystal structures; the orthorhombic 3-AliMn [11] and the
orthorhombic ¢1 phase [36], selected from among the approximant crystalline phases
reported so far. Along the pseudo-fivefold axis, the structures are constructed by
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stacking different types of atomic layers, which may be related to either one of
two main types, A or B (see figure 4). These two types of layers were defined by
their average sublattice edge length corresponding to d, ~ 4.55 A and dg ~ 2.8
A, respectively. The B-AlMn orthorhombic phase consists of four layers stacked
according to the sequence B'BB’B*: B and B* have identical atomic content and are
related by the space group symmetry operations; B’ is different and contains only Al
atoms. Conversely, the orthorhombic ¢1 phase consists of six layers. Its sequence is
BABB*A'B*. As above, the A" and B* sheets are variants of the A-type and B-type
layers, respectively, obtained by applying the space group Bbmm of the ¢1 phase.
In X-Al;Fe,, a similar sequence may be defined, namely AB”A*B”. It contains four
layers, two of the type already introduced above (A, A*) and two layers denoted B”,
similar to the layer B in the ¢1 phase but for a rotation of 36° around the 10-fold
axis. We will see in the following section that this layer B can only lie next to a
layer of type A. Both B’ and B’/ layers correspond to B and B”* layers by space
group symmetry. Such layers are shown explicitly in table 3 but we shall drop the
asterisk in the following in order to simplify the notation, the space group shift of
the B’ and B” sheets being obvious from the notation carried by the adjacent A and
B layers. The position of Al atoms in B-type layers is the same in both A and ¢1
phases, except for 36° rotation,

Table 2. Two-dimensional classification.

Examples Packing notations L A, (or pseudo Aqp)
mp - my
cell parameters corresponding | fat-f and thin-t rhombuses | convex-v peatagon, thin-t
axes rnombus and concave-¢ pentagon
B-AlMn a=65A 1/1 -> [110] .
Vi-2/1 b= 7.55/15-‘: 21 ->(100) |0 (2,2
c=238.87
A-AljsFeq a=1549 A | 1/1->[001]
b=8.08 AA 2/1 -> {100]
€= 12'4343' for A-AlsFey
y1-211 A B;. 107 (6rd) or (22 429 or Tyl 1o
~Algoving Nig
a=238A | 1/1->1100]
b=1iz3A |21 ->[101]
c=755A |for ¢1 phase
3253 0, 2z 2804 fj*ﬁ > H (l)g{ (261160 or (106 | (16.6kc) or U6 2:2e) or
c=3252A or 2420 or 2 | AL
O, a=2010A |3/2->(110]
32-5/3 gf élz,gz ﬁ\ 53->[101 136200 or 12(612) | (26,106,) or 12(4,10)
1) Al-Cu-Fe
icosahedral phase
-1 2 ALC ég =65 At 1 -> 2-fold axis |1in(oapa)) 1iN(0a 00,00}
B u-
decagonal phase
as = 3.37 At
cs = 4,15 At

t parameter in high dimensional space.
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Table 3. Three-dimensional classification.

Examples dy (A) Stacking sequences | No. of layers Notaton
3 —
B-AlgMn 8.87 B'BB'*B* 4 471(2,20)
A-AlpyFey 8.083 AB"A*B"* 4 4{4,2)
¢ 1-AlggMnq ) Nig 12.5 ABB*A*B*B 6 6(4,2)
O1-AlCuFeCr 12.27 ABB*A*B*B 6 612(2,2)Wor
6 12 (16,6,4. )0}

0;-AlCuFeCr 12.27 ABB*A*B*B 6 6 12(4,2)®
d-Al-Mn 124 B'BB*B'*B*RB 8 D 6l1te}
d-Al-Mn-Ni 2.5 ABB*A*B*RB 6 D 61
d-Al-Cu--Co 4.15 BB* 2 D 211
i-Al-Cu-Fe oo Aperiodic sequence oo see below
Icosahedron 8.636%) 4 T411=

5.345W 2
Dodecahedron 10,3116 5 I 511(e}

(d)

6259 see table 5 3
Icosadodecahedron 12.498() 6 1611t

7.742() 3
Rhombic 14.8876) 7 1711
triacontahedron 9.379(d)
a - as revealed from HREM micrograph | 34]. b - notation obtained from theoritical
assumption, )
¢ - values catculated from da = 4.55 A = edge length in layer A.
d - values calculated from dp =2.81 A = edge lengih in layer B.
¢ - notations: D = decagonal phase, | = icosahedral phase and II = (oo,e009.).

The average distance between two layers in the crystalline phases is about 2 A
This value can be related to the periodic translation distance d, in all the decagonal
phases found so far. For example, the decagonal phases of the Al-Mn, Al-Fe and
Al-Cu-Co(Si) systems are constructed by a layering system along the 10-fold axis with
six (dy = 12.4 A), eight (d3 = 16.5 A) and two (d; = 4.14 A) layers, respectively.

Thus, the 2D classification can be extended to a 3D scheme with only the addition
of a third integer, namely the number D; of layers, in the perpendicular sequence
(parallel to the 10-fold direction), that is D;r™( NV, ...). This notation can be applied
to all the approximant and quasi-crystalline phases, including the icosahedral phase,
examined in the present paper as suggested in table 3. For icosahedral quasi-crystals,
the number [); is infinite. The corresponding notation becomes I77{oo00,) Or
Ir"(ooy00,00,) Where 1 stands for Dy = co. We will see later in section 3.3 that
various stacking algorithms adapted to the icosahedral phase may be distinguished
within this scheme.

This 3D classification points out the distinction between two phases, for instance
d-Al-Mn versus d-Al-Cu-Co and A-Al,;Fe, versus ¢1 phase, which eventually could
not be distinguished according to the 2D scheme. For example, the 2D notation for
both A-Alj;Fe, and ¢1 phase is (4,2;). Without considering the detail of the atomic
decoration, these phases belong to the same class. As a matter of fact, their stacking
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sequences in the third dimension are quite different. The sequence for A-Alj;Fe, is
AB"A*B" (four layers) whereas it is ABB*A*B*B (six layers) for the ¢1 phase.

3. Periodic versus aperiodic stacking sequences

Most of the approximant and decagonal structures are constructed by stacking one or
two types of layers along the pseudo-10 and 10-fold axes, respectively, with periodicity
corresponding to an even number of layers. Examples are the approximant ¢1-
AlgMn,;Ni, (six layers), decagonal d-Al-Fe (eight-layers) and d-Al-Cu-Co (two
layers) phases. Why the decagonal and its approximant phases always consist of
an even number of layers is not yet clear. Our first intention is to demonstrate that
this is necessarily the case. The argument will be based on stacking layers of the
type introduced in the previous section, yet satisfying topological constraints on the
nature of the layer (A, A", B, B*, B”) that may follow a sheet of a given type. Such
constraints simply arise from tendency to close packing of metals and alloys and are
readily observed in known approximant crystals.

A second point of interest is to know whether genuinely aperiodic 3D crystals
may be accounted for as well by an appropriate sequence of atomic sheets. The
(positive) answer to this question will also be elaborated in this section. As a result, a
series of clusters with icosahedral point group symmetry (from icosahedron to rhombic
triacontahedron) will be constructed according to distinct stacking sequences. Thirdly,
we will shed some light on the difference between decagonal 2D and 3D aperiodic
structures.

3.1. Flat and puckered atomic layers with fivefold symmetry

We have introduced in section 2.3 that the approximant crystal structures consist of
atomic layers that may ali be referred to two main types denoted A and B, respectively.
There exist other layers, for instance A* and B*, which relate to the previous ones
through symmetry operations of the space group. Sheets like A and A* (respectively
B and B*) carry naturally the same atomic content. As already mentioned, it may
be necessary to use other sheets to account appropriately for a given structure. The
3-Al Mn compound reguires ako a layer R’ and the 41 phase a complementary layer
noted B” in the previous section. This way of decomposing the structure into 2D
elementary bricks has already been performed by several authors, see e.g. [8].

The atomic decoration characteristic of each approximant phase may be attached
to the tiling units, for instance the convex pentagon and thin rhombus of the ¢1
phase. There may be several possibilities to do so, but when a choice is made, the
relationship between atomic decoration and tiling pattem is unequivocally defined.
Yet, using a set of tiling units (ie. t, v, ¢ or t, f), a pattern with perfect fivefold
symmetry around the origin may be constructed and furthermore decorated by the
atoms attached to the units. A detailed example will be examined in section 5 to show
how to solve the decoration of any unit, including the one which is not present in the
approximant pattern (e.g. the v unit in the ¢1 phase). Figure 5 presents the A-type
and B-type sheets, having fivefold symmetry around an origin, that are produced from
the corresponding sheets shown in figure 4, which have only broken fivefold symmetry.
Using the classification scheme developed in section 2.2, it is straightforward to see
that this peculiar choice of perfect fivefold symmetry is not the only possible one.
Approximant 2D tilings of higher order than the ones illustrated in figure 4 may be
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Figure 5. Examples of simulated aperiodic patlerns, with a fivefold centre of symmetry,
based on ¢1-AlgMn;Niy subtiling elements and their atomic configurations. A and B
arc normal layers and A* and B* are two layers derived from the previous ones by
applying respectively the symmetry operations of the space group. Below B and B* are
shown two side views corresponding to the bands (broken lines) drawn in the layers B
and B* to emphasize the corrugation of the layers in the space perpendicular to their
plane.

constructed as well. In the following, we will, however, restrict ourselves to stacking
layers with perfect fivefold symmetry.

An important point to raise at this stage is that all A-type layers are flat atomic
planes whereas all B-type layers (B, B/, B”) are corrugated. They exhibit a thickness ¢
from upper to lower atoms that is typically of the order of 1.5 A (see the schematics
laid out in the bottom part of figure 5, which presents a cut through the area of
layers B, B* defined by broken lines). The edge length of each type of sheet is
different, having d, = tdg when the fivefold symmetry is perfect. The A-type
patterns therefore map onto the B-type ones by a first-order inflation. These two
differences, planarity versus corrugation and edge length, will introduce the first-
neighbour stacking constraints depicted in the following subsection.

3.2. Stereochemical constrainis and stacking algorithms

We shall not assume any knowledge of the detailed atomic potentials that promote
the formation of a given approximant structure. We just observe how it is constructed,
its layering system and the constitutive tiling units. Preserving the same units to build
up a related structure simply means that most of the set of interatomic forces are
the same except for some flexibility that permits the rearrangement. We shall sce
later in this paper that a rearrangement from an approximant phase to a quasi-crystal
involves a small nominal composition change. Conversely, we shall assume that an
appropriate composition shift triggers the relevant rearrangement.

The most important characteristic, common to all phases of interest to this work,
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is close packing. Therefore, the only requirement that any kind of arrangement of
units has to fulfil is to preserve the compactness typical of any metallic alloy. The 3D
networks will obviously obey this rule as long as most of the first neighbour distances
come close to dp. Therefore, the following hold:

(i) A structure (approximant or quasi-crystalline) necessarily contains B-type layers
(and not only A-type sheets). This obvious rule needs no further comment.

(i) The succession of A- and B-type layers cannot be random, which imposes
constraints on the possible choices of adjacent layers. These first-neighbour
constraints are made explicit below,

(iii) The angular shift between successive layers must be specified. Second-
neighbour constraints follow, which are given below as well.

The first-neighbour layers that may be associated are listed in table 4, For instance,
an A-type layer can only be followed by a B-type layer. Conversely, there is a choice
between B* and A sheets for stacking on top of a B layer, etc. When looking at all
the possibilities, one may define all the possible starting sequences that contain three
layers, the initial one being either of type A or B and the two adjacent ones, i.c. the
one below and the one above (third column of table 4).

Second-neighbour constraints arise from (iii) above when a new layer is added
to the previous starting sequence. Again, as an example, a layer of type A (or A*)

Table 4. Stacking conditions,

Layer Possible neighbourning | First neighbour Second neighbour
layers seguence sequence
A BorB" BAB B*IBABIB* (1)
B"AB (2) A¥ B"ABIB*
B"AB" A*IB"AB"|A*
A* B* or B” B*A*B¥ BIB*A*B*IB
B*A*B" BIB*A*B"IA
B"A*B" AIB"A*B"IA
B B*or A B*BRB* BiB*BB*IB
A*IB*BB*IB
B*BA A*B*BAIB
A*IB*BAIB"
BIB*BAIB"
BIB*BAIB
B* B or A* BB*B B*IBB*BIB*
B*IBB*BIA
A*B*B B*A*B*BIB*
B*IA*B*BIA
B"IA*B*BIB*
B"A*B*BIA
B" A or A* AFBTA BMA*B"AIB"
B"A*B"AIB
B*A*B"AIB"
B*IA*B"AIB

{1) bars like ) limit the sequence formed at the previous step.

(2) BAB" is strictly equivalent to B"AB. For brievity, such sequences are not reported in

the table.
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cannot join a layer B if a layer A already sits on the opposite side simply because the
distance between some A-type layer vertices would be too short. In table 4, we have
considered also the B” layer typical of the A-Al;;Fe, compound because this specific
layer releases this constraint (whereas B’ does not). This layer will play an important
role in the following. The 22 possibilities of stacking slabs that take into account the
first-neighbour constraints as well as second-neighbour constraints are listed in the
fourth column of table 4.

Thus, we have defined a set of rules that govern the stacking of layers to infinity
like a cellular automaton. Naturally, diverse structures will build up, depending on
whether the 2D sheets are periodic or not on the one hand and the stacking sequence
is periodic or not on the other: approximant 3D crystals, {D aperiodic ctystals, 2D
aperiodic {decagonal) crystals and 3D aperiodic crystals. In the following, we shall
no longer consider the approximant case nor the 1D aperiodic structure produced by
stacking 2D periodic networks according to an aperiodic sequence.

Let us thus concentrate first on the decagonal models that may be generated by a
periodic stacking of 2D PT. There are basically two ways of doing so, one by stacking
A and B planes and the other by introducing as well B” planes. Considering the first
situation, the algorithm may be referred to either an A or a B plane taken as origin.
Both cases are considered in table 5(a), which presents the various sequences that
may be built up to 10 layers with type A and B planes (if Al-Mn alloys are to be
accounted for, B sheets will substitute for A-type ones; see figure 4). This algorithm
satisfies the first- and second-neighbour stacking conditions developed in table 4 and
therefore the nature of the layer that may be stacked at a position m above the origin
layer is restricted to a limited choice as indicated in table 5(a).

We define a coefficient u, ,, as the number of distinct possibilities to occupy
the layer m when the origin layer is occupied by a sheet of type A. Similarly, the
coefficient up ,, will represent the number of possibilities to stack a sheet at position
m when the origin layer is a B-type layer. Notice that because an A-type layer is
necessarily followed by a B-type layer, the coefficients wu, o and ugy are shifted by
one layer (table 5(a)). Now, it is easy to verify that, owing to the constraints given
in table 4, these coefficients satisfy the following ‘iteration’ rules where the iteration
runs through successive layers:

Up,m = Ua mo2 T Up m_3 (3.1)
with uy g = 1, upg = 1, us, = 1, u, 3 = 2 the initial coefficients, from which the
sequence follows. The sequence also runs such that:

Uam ~ YA m—1= Ua m-2— YA m-3-

Also, the ‘B’ coefficients obey the same rule

UBm = UBm—z2 T UB,m_3 (3.2)

but with initial values ug, = 1, ug; = 1, ug; = 2, upz; = 2. Among all possibilities
the number of A or A* layers that may lic on layer m is

A= = 33
Upam = Uam-2F Uam_g = Ua,m ~ Y ma1 {3.3)

while for B and B* layers one has

B/B"
u‘A{m = uA,m - uA,m-—l' (34)
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Table 5. () Stacking algorithms for layers A, A*, B and B*. (b) Stacking algorithms
for layers A, A*, B, B* and B".

Um ug uj up u3 U4 ug g uy ug ug ui
(referred | 1 1 2 p) 3 4 5 7 9 12
o A)
B |- B¥
{B - B* {A* . B*
B B* A
(a) Ax|-B*|-B {B*
- B*
B NENE ﬁ*
A*|-B*|-B {
stacking B* |- B | {p+
] A |-Bl-B*
algotithm B |- B*
A |-B {-B* {
A* | _ B*
A¥l-B* |- B {A_B . p#
= [. B A
B B*1-B | {5,
Um [E1] 1] uz 13 U4 us ug uy ug Hg
(referred 1 1 2 2 3 4 5 7 9 12
to B}
Um up uy u2 ug 04 us ug uz ug
(referred [ |2 2 4 5 8 12 j17 |27
t0A)
B |-B*
o | ol [
B*
B B+ |-B [I?*
A* "
e |- (5
b rB {-B¥ BT
( ) A {B B*
B -A
B*{- B { (A
{ B* -B B*
A* "
| m |-av | (B
. B"[- A
stacking .px | [A*
algorithm { [ B |-B* [{5
) - |-A
g |- axf(BL|lg
Bn - A { A* B"
8 | g { =
B |-B*
“RB" |- AF B" - A* [ "
B*
B - &
B* |{ b
B*| - B
A |(B,
B*{- B { B
B* |-B

The periodicity of the layering system implies that an A" layer will appear
necessarily between two successive A-type layers (B™ between B’ layers in Al-Mn
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alloys) in order to cancel the angular shift between layers over the period. An
example of such a periodic stacking is ABB* A*B*BA (see table 5(a)). Accordingly,
the number of layers in a periodic sequence in table 5(a) starting on an A layer is
necessarily even. Furthermore, the number of independent sequences that may be
formed with m layers (m < 10) is readily evaluated from the table 5(a).

If one starts from a B-type layer (table 5(a)), one has

B/B* __
u’B,m = UB,m-2 + UB,m-4 = UBym — UB,m-1- (3.5)

For the same reason as above, sequences based on B-type layers will also comprise
only an even number of layers. As a matter of fact, there is a single possibility to
do so, namely the BB*BB* ... D2 sequence, which contains two layers (table 6). A
sequence with two layers such as ABAB is ruled out because of second-neighbour
layer exclusion (table 4) as well as a sequence with four layers. Such a sequence wilt
appear, however, after introducing B” sheets below. Sequences with more layers are
possible (table 6), such as the D6 one with six layers and the D8 with eight layers.
All D2, D6 and D8 sequences are unique and were already observed experimentally.
Conversely, the periodic stacking of 10 layers offers two distinct sequences as table
6 reports but which have not yet been found. Notice that some sequences present
mirror planes perpendicuiar to the stacking direction (space group P10,/mmm)
whereas the others do not (P10;mc).

Table 6. Stacking sequences for decagonal phases,

Type of decagonal phase number of layers [ stacking sequence

D2 2 ..BB*..

(e.g. d-Al-Cu-Co) nO mirror

D4 4 LAB"A*B".. (..55.)

(e.g. d-Al-Cu-Co) T 1

D6 6 .BABB*A*B*.. (..LL.))

(e.g. d-Al-Ni-Mn) 1 1T

D8 8 ..B¥*BABB*A*B*B..

(e.g. d-Al-Fe, d-Al-Cu-Co) no mirror .

D10, 10 | --B*A*B*BB*BB*BAB..
no mirror

D10, 10 [.BB*A*B*BB*BABB*..

T T

T mirror position

Introducing a B” layer as a possible occupant of layer m changes dramatically the
type of structures that may form (table 5(b)). The iterative algorithm is now ruled by
the relation

Upy =28 o+ Uy, 3= U,y (3.6)
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with the first three terms being 1, 2 and 2. In this formula, the subscript A was
dropped because a type A plane is necessarily included in the sequence if a B” sheet
is also present. Thus, this A plane may always be taken as origin.

Again, periodic sequences will all be composed of an even number of layers. An
example of such sequences that was not already pointed out in table 5(a) is the D4
sequence with four layers ABYA*B” (table 6).

Except for the two possible D10a and D10b sequences, which have not yet been
observed in real materials, all other stackings fit the experimental data available today.

An important new fact due to the introduction of layer B” is the existence of
long and short segments in the sequences of table 5(b), ie. £ = ABB*A* and § =
AB"A*. Because A-type sheets are actually planar, the length of these segments is
well defined. We will demonstrate in the next subsection that these lengths are in the
ratio £ /8§ = = in aperiodic stackings. The point t0 mention here is that from table
5(b) one may have basically three distinct configurations (i) sequences of short slabs,
8888 ..., and (ii) sequences of long slabs, LLLL .. ., both as indicated in table 6,
and (iii) interlaced sequences constructed by using both £ and S slabs,

An example is the D8 sequence presented in table 6. A probably more attractive
case is the one that may be built by stacking the two slabs £ and § according to
a Fibonacci scheme. We demonstrate below that this construction is feasibie and
leads to a calculated compaosition in agreement with experimental determinations of
the composition of the icosahedral phase. We insist again on the point that such
a model cannot correspond to an ideal icosahedral phase, which shows the atom
number density varying continuously within a certain range when going from one
plane to another. Departure from ideal icosahedral point group symmetry is well
known, however, in many icosahedral phases, including the thermodynamically stable
ones and may therefore be accounted for by our model.

This important specific case is the one that starts with two adjacent slabs £ and
S and therefore is composed of an odd number of five layers. Another sequence
8L, enanthiomorphous to the previous one, may possibly be stacked on top of
it, thus leading to a hypothetical D10 decagonal structure, which however has not
been observed till now. Looking at table 5(b) proves that such a configuration has
little probability of occurring as the nominal composition of the structure does not
correspond to the annronriate nroportion of RY lavers. Tndeed. the probahility of

putting a layer B” at the sixth position is given by

pE = (ug”™ Jus) (uy "™ [ur) (3.7)
where the coefficients uf/* " have the same meaning as above. From table 5(b), one
obtains p2” = (3/8) x (6/17) = 0.132. Consider now the six equivalent directions of
fivefold symmetry along which the stacking must be performed, say on the upper side
of an icosahedral cluster. The layers deposited along these directions will interact on
edges and vertices of the cluster. This tells us that the probability to lay down B
layers is vanishingly small ((pB")6 = 5.4 x 10-9).

As a result, the probability to have two successive S slabs along each of the 12
equivalent fivefold directions of the complete icosahedral cluster is virtually zero and
an aperiodic stacking may form with much higher probability than a decagonal phase
(with the proviso again that the composition is sharply the right one). There are
two interesting conclusions to draw from this point. The first is that the sequence
of lengths of the £ and § slabs naturally follows the Fibonacci series. The length
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of the individual segments in icosahedral clusters is examined in figure 6 of the next
subsection. But meanwhile the number of individual layers is ruled by the second
Lucas series based on £& = 3 and £ = 4, which also approximates the golden
mean. The second conclusion is that, opposite to the growth of decagonal crystals
in the periodic direction, which in the present model entails no difficulty, the growth
of an aperiodic stacking necessarily requires removal of many defected layers, which
may grow along separate fivefold directions. This may explain why the growth of
icosahedral phases is a very slow process [37), for many defects have to be eliminated
to achieve icosahedral order.

a1

] B

=} ] B*

Figure 6. Side views of the 2D cluster models of the icosahedral point group: (a) BB*A*-
type icosahedral cluster; (b) BABB*-type dodecahedral cluster; (c) ABB*A*(B')-type
icosadodecahedral cluster (with broken lines: icosahedral kernet); (d) (B)ABB*A*B"-
type icosahedral cluster (thick lines) including an ABB*A*(B") icosadodecahedral
cluster (thin lines) and a BB*A* icosahedral kernel; (¢) the A*B*BAB"A*-type
dodecahedral cluster (thick lines) including a B*BAB" dodecahedral cluster (thin lines)
and a (B*)BA(B") icosahedral cluster kemel (broken lines); (f) BABB*A*B"A-type
icosadodecahedral cluster (thick lines) including a (B)ABB*A*B" icosahedral cluster
(thin lines) and an ABB*A*(B’') icosadodecahedral cluster (broken lines); and (g)
(B'YA*B*BAB"A"(B*)-type rhombic triacontahedral cluster (thick lines) including an
A*B*BAB”A* dodecahedral cluster (broken lines) and a (B*)BA(B") icosahedral cluster
(thin lines).

The change from a periodic to a quasi-periodic stacking of atomic slabs is basically
telated to a composition change. Indeed, an odd number of layers requires a change
in the number of A-type layers (B’ in Al-Mn alloys) relative to that of B and B* ones.
The introduction of a B”-type layer is specifically able to achieve such a variation.
More precisely, a Fibonacci stacking will be characterized by a relative abundance



10186 S-S Kang and J-M Dubois

(t/3+1/2)/7% ~ 0.39 of A layers (or B'), which falls between the values of 172
appropriate to the D4 stacking and 1/3 for the D6 sequence. If the model is designed
for Al-Mn alloys by comparing to the 3-Al;Mn compound, the aperiodic stacking
will contain fewer Mn atoms than the decagonal one because the number of B’
layers, which carries only Al atoms, will increase. Opposite to this, for the Al-Mn—Ni
alloys, the aperiodic model will require a higher proportion of A-type layers than the
decagonal case and therefore will contain more Ni atoms. Section 5 will argue in
more detail on this point.

3.3. Construction of clusters with the icosahedral point group symmetry

According to the previous section, models constructed by stacking atomic sheets of A,
B and B” type may be able to account for either decagonal ordering or for defected
icosahedral order. In the present section, we construct the first four clusters of the
icosahedral point group and show that they correspond indeed to the icosahedral
monograins known so far. We focus on fragments of layers of the types already
introduced and restrict ourselves to those atoms which occupy the vertices of the
relevant cluster centred at the origin of the lattice, The very same clusters form
around all fivefold coordinated nodes of the initial A-type layer of the sequence.
Layers of infinite extension will propagate the same order along all 12 equivalent
directions of fivefold symmetry. We shall not, however, assume that this model is
directly related to the actval growth mechanism of quasi-crystals despite the fact
that the outermost shells actually fit the real crystal growth morphologies of stable
icosahedral phases.

Figure 6 presents the series of clusters with the constitutive layers shown. The
stacking direction is vertical in this figure. Refer to table 7 for the labelling of
stacking sequences. The smallest cluster that can be obtained (figure 6(a}) is the
icosahedron I1 (I because the central polyhedron belongs to the icosahedral cluster
group, 1 because it is the first one in the hierarchy of figure 6). It is formed by an
atom at the centre surrounded by 12 other atoms. This kind of icosahedral cluster
has been observed in many crystalline compounds, for instance, in A-Mn {31] and
in Al-Mo [38] alloy systems. The I1 cluster has eight variants (namely, i; . . .ig) with
different generating sequences as given in table 7.

Next in the series comes the dodacahedral 12 cluster {figure 8(6Y). This cluster
can be constructed in two ways, by using either a B*BAB stacking or a B*"BAB”
stacking (table 7). Then the smallest icosadodecahedral cluster (figure 6(c)) can only
be constructed in one way, with stacking sequence ABB*A*B” (table 7). Up to
this stage, these clusters are not specific and may be found in both icosahedral and
decagonal phases since they all contain a fragment of the £ segment, ie. the slab
BB*.

Clusters with edge length d, = 4.55 A = rdy will form at the next step of
the construction, although it is important to insist again that this view is artificial
and is elaborated only to simplify the presentation! A-type layers already constituting
the previous clusters have the same edge length as the new ones and the vertices
of the layers shared by successive shells already exist. For clarity, they are just not
drawn. The icosahedral 14 cluster has six variants (table 7). These variants can be
distinguished into two groups, one originating from the i, cluster (the ‘kernel’) and
the other from the i; cluster (table 7). One of its models with stacking sequence
(BJABB*A*B" is given in figure 6(d) (hereafter, the notation (0J) indicates that
only a part of the corrugated layer in terms of thickness ¢ (see figure 5) belongs



Polytypism in decagonal quasi-crystals 10187

Table 7. (a) Stacking sequences for four types of cluster models. —->, sequences
which will lead 10 a perfect stacking (Fibonacci stacking sequence). B, B* and B are
corrugated layers and therefore some of the aloms that are in the upper and lower layers
do not belong to the cluster under consideration. When such a layer is introduced, it is
referred to by brackets ().

cluster model stacking sequence
Il 1; - BB*A* 1; - (B¥)BA(B™)
-11411-icosah: i3 - (B¥)BA(B) ig - A*B"A(B")

(t-114I1-icosahedron) is - A¥B"A(B) ic - B"A*B*

i7 - B*B(B¥) ig - BB¥*(B)
12 1) I2y-type -B*BAB

23 I 25-type - BFBAB"
(v-11511-dodecahedron) ) 1 2-type
I3 ABB*A*(B")

(t-116]I-icosadodecahedron)
1-U7I-rhombic triacontahedron

no sequence can be generated in such

conditions
14 1} I 44-type - (B)ABB*A®B*
(141l-icosahedron) --> (BYABB*A*RB"
--> (B"ABB*A*B*
-->(B"YABB*A*B"
2) I 45-type --> (B*)BAB"A*B*
- (B*)BAB"A*B"
15 --> A¥*B*BAB"A¥*
{151i-dodecahedron)
16 1) I 6;-type --> BABB*A*B"A
(I61l-icosadodecahedron) 2)I62-type - BB*¥*A*¥B"AB"A*

- AB"A*B"AB"A*
17 --> B¥A¥B¥BAR"A*B*
(I7II-thombic triacontahedron) - B¥A*B*BAB"A*B"
> B"A*B*BAB"A¥*B*

- B"A*B*BAB"A*B"

to the polyhedron). The vertex atoms of this icosahedral shell are located on top
of the icosadodecahedral 13 pentagon faces and constitute the well known Mackay
icosahedron [39]. The dodecahedral IS5 cluster (figure 6(e)) can only be constructed
by one sequence A*B*BAB”A*, which originates from the same i, variant of the I2
cluster. In the icosadodecahedral I6 case, the cluster has three variants (table 7). They
are built on two distinct clusters, i; and i,. These clusters are different from the ones
in the smallest 13 model (i.e. i, and ;). One I6 cluster with sequence BABB* A*B"A
is schematized in figure 6(f) (the central kernel i, is missing and only vertex atoms
are drawn). This cluster forms around the 14 cluster of figure 6(d) and represents the
main cluster pointed out by high-dimensional crystallographic analysis of the Al-Mn
icosahedral phase [40). The rhombic triacontahedron, cluster 17, has four variants.
We show in figure 6(g) one of the four variants, namely (B")A"B"BAB”A*(B*). This
variant surrounds the dodecahedral 15 cluster schematized in figure 6(e) but not drawn
in figure 6(g). This 17 cluster is the triacontahedral cluster of atoms characteristic of
Al-Cu-Li alloys [41] and resembles the cluster used in the model proposed by Duneau
and Oguey {21]. It was recognized in the structure of the Al-Cu-Li icosahedral phase
obtained by a high-dimensional crystallographic approach [42].

To conclude this subsection, it is clear that perfect icosahedral ordering cannot
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be produced by any sequence containing only the £ and S segments. Nevertheless,
a stacking of both slabs that is arranged according to the Fibonacci algorithm closely
approaches the atomic arrangement observed in icosahedral phases. In the next
section, we shall refer to this type of network as the pseudo-icosahedral phase. The
lengths are then naturally in the ratio £/S = 7. The Mackay icosahedron, which
was often recognized as a basic constitutive block of Al-transition metal (e.g. Al-Mn,
Al-Cu-Fe) icosahedral phases, is clearly present in the stackings studied here. In the
Al-Li-Cu icosahedral phase, the equivalent building block is the so-called ‘soccer ball’
constructed by an I7 cluster surrounding an I5 dodecahedron, which also arises in
the appropriate stacking. On the contrary, in the decagonal phase complete clusters
at the highest hierarchy level, ie. 14 to I7, cannot form because £ and § segments
cannot become adjacent to each other. This argument points out the most significant
difference between the two types of quasi-crystals.

4. Relative number of tiling units

There are two isostructural decorations of the Penrose tiling (PT) that are used to
describe the quasi-periodic structure of the decagonal and pscudo-icosahedral quasi-
crystals. One pattern is constructed by f and t tiling units [43] (hereafter, called the
PT1 pattern) and the other is constructed by v, t and ¢ units [7] (hereafter, the P12
pattern). We reproduce these patterns with a fivefold symmetry centre in figures 7(a)
and 8(a). The atomic decorations of the PT1 and PT2 patterns ar¢ deduced from the
B-AlMn and ¢1 structures, respectively (see section 5 for details). The PTI pattern
is generated by tiling the plane with f and t units and applying the matching rules
introduced by de Bruijn [43]. It can be transformed to the PT2 pattern by replacing
the f and t units (with no atomic decoration) by the v, t and c units according to the
line decoration schematized in the left side of figure 8(a) (the dots indicate the ‘pole’
vertices) [44].

We use the inflation rules [45] to calculate the relative abundance number F; of
a tiling unit (: = £, t, v and c) in both PT patterns. Consider first a single tiling unit,
either the fat thombus (f) of the PT1 pattern (unit of order » = 0 in figure 7(b))
or the convex pentagon (v) of the PT2 pattern (unit of order n = 0 in figure 8(b)).
The edge iength r™d, of the tiing unit increases (d; is kepi consiani) wiik miiaion
according to the inflation order number n =0, 1,2, 3, ... 0orn =0, 2, 4,6, ...
for the PT1 or PT2 patterns, respectively. In the PT1 pattern, the total number £ of
f units increases with the inflation order number n like the odd-order coefiicients of
the Fibonacci series, i.e. £f = ¢f. ;. For instance, at step number 2 of the inflation,
there are five { units while there are 13 at the next step (figure 7(b)). The number
of t units increases like the even-order terms of the Fibonacci series, ie. £, = €], _,.
Therefore, the relative number of f units F, = &%, /(£!, +£L ) approximates the inverse
golden mean r~! like the Fibonacci ratio fgn_l J(E 4+ €5 _1). Accordingly, the
relative abundance of the thin rhombus (t) is F, = 1 — F; = r~% Meanwhile, in the
P12 pattern, the relative numbers of convex pentagons (v), thin rhombuses (t) and

concave pentagons (c) are respectively given by F: Fi: F, = 71 T34

5. Model quasi-crystal for AI-Mn-(Ni) alloys and experimental tests

Atomic decoration models were sometimes proposed as an interpretation of
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Figure 7. (¢) Penrose tiling PT1 constructed by  Figure 8. Penrose tiling PT2 constructed by v-
f- and t-rhombuses. The atomic configuration is  pentagons, 1-thombuses and c-pentagons. The
laid out according to the B layer in §-AlgMn. (b) alomic configuration is taken from the A layer
Relative number F; of fat {- and thin t-thombuses  in ¢1-AlgMnyNiy. (b) Relative number F; of
versus inflation order number n of the wnit edge  convex v-pentagons, thin t-rhombuses and concave
length ™ do, with dg the initial edge length of the  c-pentagons versus inflation order number n of the
sublattice. unit edge length 7"dp, with dy the initial edge
length of the sublattice.

experimental results [46,47], but the most advanced designs were built on a
comparison with crystal references. In order to substantiate the general model
proposed in the first part of this paper, we shall also build a specific model for
a quasi-crystalline phase of given composition, starting from atomic position data
on a related crystal. For illustration, let us first select two parent structures: ¢1-
Alg,Mny;Ni, and 3-AlgMn. This choice is made for two reasons. First, the Al.Mn
crystal may be formed by crystallization of its related quasi-crystal [48); and secondly,
their lattices (perpendicular to a pseudo-fivefold axis) can be constructed with the
help of f, t, v and ¢ units (figure 4). In fact, their structure units can be used
to generatc a quasi-periodic PT1 pattern or alternatively a PT2 pattern owing to the
lattice transformation rules introduced by Henley [44] (see units schematized in left
side of figure 8(a)). We will explain this point of view for the Al-Mn alloy with the PT1
pattern (section 5.1.1) and for an Al-Mn-Ni alloy with the PT2 pattern (section 5.1.2).



10190 S-S Kang and J-M Dubois

5.1. Composition of the decagonal phase

3.1.1. Al-Mn-Ni decagonal phase. Using the atomic decoration of the subtiling
elements in the ¢1 phase, an atomic decoration of the pT2 pattern is generated
(figure 8(a)). This 2D PT pattern can be further lifted to a 3D model by assuming
that the sequence in the third dimension follows the sequence of the ¢1 phase,
ie. d; = 12.5 A (periodic distance in the decagonal d-Al-Ni-Mn phase [49]) and
sequence ABB*A*B*B (table 3). This 3D model is in fact packed by five subunit
polyhedra such as the ones shown in figure 9. The first three units V, V* and P are
exactly the same as the units constructing the ¢1 phase. Note that the capital letters
V, V* etc., label the 3D tiling units with 2D basis tiles denoted v, v*, etc., respectively.
The other two units C and C* come from the space left open between the previous
ones when constructing the PT. The relevant atomic decoration is obtained on the
one hand by preserving the fivefold symmetry around the centre marked by a star in
figure 8(a), i.e. applving the 10-fold symmetry operation. On the other hand, the ¢1
phase exhibits a mirror perpendicular to the b axis, which we shall preserve in the
decagonal structure model, thus going to the P10s/mmm space group symmetry.
Since this 3D model is based on the low-energy atomic configuration of the stable
¢1 phase, the occupancy factors 1 for each site arc supposed to be identical to the
ones in the initial structure of the ¢1 phase. Here ¥y, =1 for the occupancy factor
of element X (X = Al, Mn or Ni) and atomic site number j§ (7 = 1, 2, 3, ...).
To caiculate the composition of the decagonal phase in the Al-Mn-Ni system, we
count the number of atoms of each species present in each polyhedral unit V, T or
C. From section 4, the relative abundance of units v, t and c in the PT pattern is
F,:F:F, = 7~L:7=3 7—% which is also the one for the units in 3D. The general
formula that gives this composition can be written as:

Fy= Yy; Z X
=V, V...

= Yy; [F/2( Xy + Xy ) + B X1+ F/2A X + X)) (5.1)

where Fy is the number of atoms X present in the model decagonal structure and
X; is the number of atoms X counted in each polyhedral unit of type i (i = V, V*, T,
Cand C*). In this casc, the calculated composition for a porfcctly ordered decagenal
phase is Al Mnyg oNiyyo (at.%). This composition is close to the composition
of the ¢1 phase (Aly ,Mns44Nis;3), which is characterized by F: F, = 4:2.
Assuming that the pattern presented in figure 1(e) is suitable for the isostructural
O, phase with F: F;: F, = 16:6:4, the composition would be Aly ;Mnyg 5¢Ni, p. In
comparison, the experimental composition of the O, phase determined by optimizing
alloy compositions (see next subsection) is around Al,y ¢Mn,, ¢Nis 4. It is remarkable
that a change in the relative number of tiling units, which entails a minute change
of composition (table 8), triggers the structure construction into the true decagonal
phase instead of the approximant structure, ¢1 phase. The calculated compositions of
the decagonal and O, phase are almost the same within 0.1%. The reversible phase
transitions that are often observed between quasi-crystals and their approximants
[1,3,50] may accordingly be related to the temperature dependence of the solubility
of chemical species in the high-temperature quasi-crystal.

5.1.2. Al-Mn decagonal phase. The structure of 3-AlMn consists of four layers,
namely B’BB’B* as already mentioned. This scheme cannot be directly applied to
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Figure 9. Sct of 3D tiling units suitable for the decagonal phase of the Al-Mn—Ni sysiem
with dy = 12.5 A. The atoms marked | aod 2 are Mn aed Ni respectively, and full
circles are Al atoms. The V* and C* units have the same atomic content as the V and
C units, respectively.

Table 8. Experimental and calculated compositions for quasi-crystalline and crystalline
phases in Al-Mn-Ni and Al-Mn alloy systems.

Phases Expenimental composition Calculated composition

Al-Mn-NTalloys Al-Mn alloys Al-Mn-Ni alloys Al-Mn alloys

Decagonal phase | Alys.s2MnyqgaNisas (1)]  AlzMnp Alzg ssMn g 5oNig 52 Alr7.aMnz g
(this work) (ref. 38)

Icosahedral phase | Algo.sMnya 7sNiss (2} AlygsMnzoa Alr73aMns.7:Nis 94 Alzg 4Mnz06
{this work} (ref. 42)

AlgoMn;3Nig )| AkesMnyps

(ref.53) (ref. 43) .

#1 phase A}?ng&oMnls.sale.u Alzg.49Mn s 3aNis 13
ref.

isostructural Alyg.3aMn 4 g3Nis 35 (3) Al saMn g s6Nis 91

01-phase (this work)

1- As quenched state containing an almost decagonal phase.
2- As quenched state containing a mixture of decagonal, crystalline and icosahedral phases
3. As anncaled state (3 hours at 825°C) conmining several other minority crystalline phases.

the Al-Mn decagonal phase because the repetition distance along the 10-fold axis
is too long, ie. 124 A, suggesting that six layers are needed. We thus select a
sequence B'BB*B’B*B, which shows mirror planes on B’ sheets in accordance with
some clectron diffraction results {5]. Applying the atomic decoration of each tiling
element in the 3-AlMn (figure 10) structure to a PT1 pattern will give for example
the configuration given in figure 7(a). To estimate the composition of this decagonal
pbase, we calculate the proportion of each layer (B’ or B and B*) present in the
sequence B'BB*B'B*B and we count the number of atoms X occupying each layer.
With Fi: F; = 7—1: 772 (from section 3), the proportion of layer [ (I = B or B) in
the sequence BB*B’'B*BB’, Fy: Fj = 2/3:1/3 and the number of atoms X in layer
[, NB:NBE = r:1and NE: NB, = 3.618:0, the general formula becomes

Fi=3 FNy=(N{F+ NP Fp) (5.2)

where Iy is the relative abundance of atomic species X in the Al-Mn decagonal
phase,
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<>
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Figure 10. (a) Two-dimensional subtiling elements
corresponding to the layers B, B’ and B* of 8-
AlgMn with 1 indicating Mn aloms (see also figure
4).

The composition that can be deduced from this formula is Al Mny, .. This
composition is very close to the experimental one Al,,Mn,, as reported by Dauiton
et al [51}

5.2. Composition of the pseudo-icosahedral phase

In this section, we use the 2D Penrose tilings PTi, Fy: F; = r—1: 772 (figure 9), and
P12, F,: F: F, = r=':+=3 7% (figure 8), and the perfect Fibonacci stacking sequence
(N /Ng = r) to calculate the composition of the pseudo-icosahedral model in order
to make comparisons with data available on the icosahedral phases existing in the
Al-Mn and Al-Mn-Ni alloy systems. The example below is given for the case of
Al-Mn-Ni alloys.

First, we calculate the number of atoms in each layer ! (I = A or B), (N§). The
number of atoms X = Al, Mn or Ni in layer A are:

NA = 125+ 3.5)F, + 1F,+ }(1.5+ L.5)F, = 2.309
N, = Y)F, + 1F, 4+ Y(2)F, = 0.691
Nt = X(2)F, = 0.618

whereas in layer B:

NR =1554+55)F,+1F+1F,=3.781
Ny = 2054 05)F, + 1F, + 1F, = 0.691
NE =0F, =0.
Secondly, we calculate the relative number F* of layers [ stacked in a segment
w of the sequence of tiles w = L or § (L = ABB*A" and § = AB"A*). We obtain
the ratio Ff: Ff = 1/3:2/3 and F5: F§ = 1: 1. Thirdly, we calculate the relative

abundance F2 of segments w in the perfect Fibonacci (F) stacking, yielding the
ratio F7: FZ = v~1: 72 Then, the general formula can be rewritten as

Fy=) FJ ) FUNi=FZ(N{FC + NUF§) + FE(NRFR+ NRE) (53)
where FY is the relative abundance of element X in the pseudo-icosahedral phase.

The calculated compositions are i-Al,; 5,Mny, 55 Ni ¢4 (at.%) and i-Alyy Mny, ¢ (at.%)
(table 8). The composition calculated for the A-Mn-Ni icosahedral phase is slightly
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different from the composition Alg ,sMn,, ,Nis ; measured in this work (see next
subsection) and AlgMn,,Ni; as reported in [52). Note that these experimental
determination were performed on specimens consisting of a mixture of crystalline,
decagonal and icosahedral phases. Although close to it, they do not represent the
true composition of the icosahedral phase.

In contrast with the decagonal phase, which grows in the same alloy system
Al-Mn-Ni, the icosahedral phase needs more Ni atoms than the decagonal phase.
The Fibonacci sequence increases the number of layers A by a factor r*/3 with
respect to the periodic sequence ABB* A"B*B. Since Ni atoms are found only in
layer A, their presence thus favours the formation of the icosahedral phase. For
the Al-Mn case, the calculated composition Al,, ,Mn,, . is almost exactly the same
as the composition (Al/Si);y ;Mn,,, calculated by Duneau and Oguey [21] or the
experimental composition Al sMny, s as reported for Al-Mn icosahedral phases
that contain no silicon [22,53]. .

3.3. Experimental data on the Al-Mn-Ni decagonal phase

The validity of our approach may be tested experimentally by scanning the structures
that form in these alloy systems, for instance in the Al-Mn-Ni alloy, as functions of
composition. Note that the real compositions of the decagonal phase [49] as well as
of the icosahedral phase [52] have not yet been determined. To this end, let us first
consider three ratios of polyhedral tiling units Fy,: Fp: F- as follows:

(A} 05:03:02 corresponding to a composition Al ;Mn,, | Niy 4
{B) 0.651:0.218:0.131 corresponding to a composition Alyy g;Mny, gz Nis 44
(C) 0.81:0.11:0.08 corresponding to a composition Alg, ,sMny4 45Nis 5

These ratios span an overestimated range with respect to the relative number of
units in the PT2 pattern, so that the results will be more noteworthy for structure
analysis.

Alloys of nominal composition as indicated above were prepared in an induction
melting furnace under inert helium atmosphere. In order to study the phase stability
versus the cooling rate, ribbon samples were prepared by the melt spinning technique
on a rotating copper wheel at two quenching rates produced either by a low quenching
wheel speed of 12 m s~ for the samples denoted M, or by a high quenching wheel
speed of 40 m s~! for the samples denoted M, (M = A, B or C as defined above).
Their stabilities have also been studied by differential scanning calorimetry (DSC) with
controlled heating and cooling rates (5°C min~!). Figures 11 and 12 present the x-ray
diffraction patterns of all quenched samples. Only the alloy B, which corresponds to
the exact calculated nominal composition of the d phase, shows a pure decagonal-like
diffraction pattern (figure 11). The formation of this d phase is almost independent
of the quenching rate. As indexed in the diffractogram (figure 12), only a small
amount of primitive hexagonal ¢ phase (a = 17.8 A and ¢ = 12.5 A) is observed
in the sample prepared at the highest quenching rate. In fact, the d phase is not
stable. A transformation peak begins to appear at about 650°C on the DSC curve
(figure 13). After annealing for 3 h at 825°C and slow cooling to room temperature,
the sample gives a diffraction pattern characteristic of a few crystalline phases (not
shown here). From [49] the transmission electron microscopy results obtained on an
alloy of composition identical to that of the ¢1 phase show that a decagonal phase



10194 S-S Kang and J-M Dubois

2) 2
: ~4
Intensity 1
. O] e Sample Ay
~ &
g |2
S ks .
T -2 - . -
+ = For h -~ - o=
P o Py A 3
- e o“é A 2 'Zn
pul o
* & : st o~ *Re o pa
= g _= =1 * T av==a r T .
E S o SllxSx T gza e 22
= = o= L | - “ o omie ! e
= v,g*:.* g s ax s 228  2'EER
3 T ~ ~ <

]
3

b)

lJ!l!-d,””_d

A 034

i ¥

12
02210-d

12214-d

2210-d
14523.4
133184
25525-d

(1]
—"

Cy

»e
{N06)-2 +d

6123}
(fam .
d
4+ (13 0120)0€

d +(5320)-¢

8530)-€

F 1

100 120

4221y
d
d
(4123)¢
5 d
d
T __dtiin-e
- d (8%0)-
d
i
d
e wone
W

b

o
o6
(=]

53

Figure 11. X-ray diffraction patterns of melt-spun samples quenched at 12 m s~k
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B—sample By; and (¢) Algo7sMny3 2sNis 5 (at.%), alloy C——sampie C;. See [56] for
decagonal indexing.

is produced in the quenched samples but, after the authors, this phase transforms o
a mixture of several approximant phases when a long-term annealing is performed.
In our annealed sample, more than one crystalline phase is contained, but with
the ¢1 phase as the major constituent. One of the other crystalline phases is an
orthorhombic phase isotypic to the ©O; phasc [54] (see figure 11{(a)), space group
Bbm2,, cell parameters a = 22.5 A, b= 12.5 A and c =30.44 A

When reducing the f,, ratio (alloy A), the d phase can be formed only at a high
quenching rate (figure 12(a)). It is transformed to a crystalline phase ¢ with cell
parameters a = 7.59 A and ¢ = 7.83 A, space group P6,/mme isotypic with the
¢-Al,;Mn; hexagonal phase [55] upon heating up to 590°C (figure 13(a)). At low
quenching rate, the amount of the d phase is negligible (figure 1(a)). When increasing
the fy ratio (alloy C), the d phase scems to be more stable at room temperature.



Polytypism in decagonal quasi-crystals 10195

1)
w * Sample A)_
-
v ol 7 ?32 3
< - * e E.
e -.;‘v - ow - ne o "‘l‘"
b) ~ Bz
T
w

E

d
dd
E
de
 ——
{td
fd

d

d
] d
za

[
RSV |
i’

)
[

3 ¥ 7
- = =
S g =
= o = s
N_ g g_ =
-~y

60 80 100 120

20

Figure 12. Same as figure 11 but for meit-spun samples quenched at 40 m s=1. See [57]
for icosahedral indexing.

Although it coexists with the e phase (figures 11(c) and 12(c)), no transformation
peak can be observed in the DSC curve (figure 13{c)). The diffractogram of this d
phase can be relevant either to a microcrystalline state or to a stable decagonal phase,
but referring to its irregularly shaped and quite broadened peaks, it most probably
refers to a microcrystalline rather than quasi-crystalline state. If the transformation
exists, it may be very sluggish so that the variation of enthalpy A H becomes too small
to be detected. This explains why the endothermic signal of the alloy B (figure 13(b))
is in fact detected at crystal-crystal phase transitions. The decagonal — approximant
transition may take place before this endothermic peak. In addition, a metastable
icosahedral phase [52] has been found in the higher quenching rate sample of the

same alloy (figure 12(c)).

6. Conclusions

A detailed classification scheme in 1D, 2D and 3D real space is proposed for the



10196 S-S Kang and J-M Dubois

Heat flow (AH)
Exo.
b_),w—-f’\

c) Sample C|
Figure 13, Differential scanning
calorimetry {DSC) curves (heating rate

& Sample C2 A 5°C min—!) for meli-spun samples: (a)
alloy A—sample A2, 40 m s—1; (b) al-
loy B—sample By, 12 m s=1; (¢) alloy

2 g g g g8 3 C—sample C;, 12 m s~1; and (d) alloy

Temper:luure ey C—sample C2, 40 m s—L

approximant phases, fivefold symmetry and 10-fold symmetry quasi-crystals. This
scheme is based on the close relationship between the structure of the approximant
and the quasi-crystalline phases. It may also be applicable to other crystalline phases
and quasi-crystalline phases by packing other subtiling units.

Referring to the construction of 3D cluster models of the icosahedral group in
simulated layering systems, we conclude that pseudo-icosahedral quasi-crystals may
be built with two layers (or more) stacked along a fivefold axis as the decagonal
quasi-crystals do. However, this time the stacking sequence is generated with the
atomic layers grouped in short and long segments reproduced aperiodically. This
relates the pseudo-icosahedral phase and the decagonal phase to a unique stacking
scheme of atomic layers: variants depend on the details incorporated in the layering
system and basically on the nominal composition. We suggest that the decagonal or
approximant structures will form when a centrosymmetric position is present in the
stacking whereas the icosahedral structure will form if the stacking sequence contains
a nON-Centrosyrnmetric origin.

This way nf descrihing the structure allows us tn infer the structure of any phase
{approximant as well as decagonal or icosahedral) by construction of 3D model
structures based on a known crystalline phase (if it exists) whose composition is
nearby. This approach is applied to the Al-Mn-Ni and Al-Mn alloy systems. We
have shown that the formation of specific quasi-crystalline phases depends mainly
on the relative proportion of convex pentagons with respect to concave pentagons
and rhombic tiling elements. The suitable ratio for the quasi-crystalline phase
corresponds to that obtained for a perfect Penrose tiling, namely Fi: F, = 7~ o
and F: F: F, = v—h:7=3% 7% The calculated compositions are in agreement with
the experimental results.
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